IRA-EMO : Interactive Method Using Reservation and Aspiration Levels for Evolutionary Multiobjective Optimization
Saborido, R., Ruiz, A. B., Luque, M., & Miettinen, K. (2019). IRA-EMO : Interactive Method Using Reservation and Aspiration Levels for Evolutionary Multiobjective Optimization. In K. Deb, E. Goodman, C. A. C. Coello, K. Klamroth, K. Miettinen, S. Mostaghim, & P. Reed (Eds.), Evolutionary Multi-Criterion Optimization : 10th International Conference, EMO 2019, East Lansing, MI, USA, March 10-13, 2019, Proceedings (pp. 618-630). Springer International Publishing. Lecture Notes in Computer Science, 11411. https://doi.org/10.1007/978-3-030-12598-1_49
Julkaistu sarjassa
Lecture Notes in Computer ScienceToimittajat
Päivämäärä
2019Oppiaine
TietotekniikkaMultiobjective Optimization GroupLaskennallinen tiedeMathematical Information TechnologyMultiobjective Optimization GroupComputational ScienceTekijänoikeudet
© Springer Nature Switzerland AG 2019.
We propose a new interactive evolutionary multiobjective optimization method, IRA-EMO. At each iteration, the decision maker (DM) expresses her/his preferences as an interesting interval for objective function values. The DM also specifies the number of representative Pareto optimal solutions in these intervals referred to as regions of interest one wants to study. Finally, a real-life engineering three-objective optimization problem is used to demonstrate how IRA-EMO works in practice for finding the most preferred solution.
Julkaisija
Springer International PublishingEmojulkaisun ISBN
978-3-030-12597-4Konferenssi
International Conference on Evolutionary Multi-Criterion OptimizationKuuluu julkaisuun
Evolutionary Multi-Criterion Optimization : 10th International Conference, EMO 2019, East Lansing, MI, USA, March 10-13, 2019, ProceedingsISSN Hae Julkaisufoorumista
0302-9743Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28954855
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
This research is funded by the Spanish Government (ECO2017-88883-R and ECO2017-90573-REDT), the Andalusian Regional Government (SEJ-532) and the Academy of Finland (project 287496). Ana B. Ruiz thanks the post-doctoral fellowship “Captación de Talento para la Investigación” at the Univ. of Málaga. The research is related to thematic research area DEMO (Univ. of Jyvaskyla).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
An Artificial Decision Maker for Comparing Reference Point Based Interactive Evolutionary Multiobjective Optimization Methods
Afsar, Bekir; Miettinen, Kaisa; Ruiz, Ana B. (Springer, 2021)Comparing interactive evolutionary multiobjective optimization methods is controversial. The main difficulties come from features inherent to interactive solution processes involving real decision makers. The human can be ... -
Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker
Afsar, Bekir; Ruiz, Ana B.; Miettinen, Kaisa (Springer Science+Business Media, 2023)Solving multiobjective optimization problems with interactive methods enables a decision maker with domain expertise to direct the search for the most preferred trade-offs with preference information and learn about the ... -
Desirable properties of performance indicators for assessing interactive evolutionary multiobjective optimization methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Miettinen, Kaisa (ACM, 2022)Interactive methods support decision makers in finding the most preferred solution in multiobjective optimization problems. They iteratively incorporate the decision maker's preference information to find the best balance ... -
A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Emmerich, Michael; Miettinen, Kaisa (IEEE, 2024)In recent years, interactive evolutionary multiobjective optimization methods have been getting more and more attention. In these methods, a decision maker, who is a domain expert, is iteratively involved in the solution ... -
Component-based thinking in designing interactive multiobjective evolutionary methods
Lárraga, Giomara; Miettinen, Kaisa (ACM, 2023)Multiobjective optimization problems have multiple conflicting objective functions to be optimized simultaneously. They have many Pareto optimal solutions representing different trade-offs, and a decision-maker needs to ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.