An Artificial Decision Maker for Comparing Reference Point Based Interactive Evolutionary Multiobjective Optimization Methods
Afsar, B., Miettinen, K., & Ruiz, A. B. (2021). An Artificial Decision Maker for Comparing Reference Point Based Interactive Evolutionary Multiobjective Optimization Methods. In H. Ishibuchi, Q. Zhang, R. Cheng, K. Li, H. Li, H. Wang, & A. Zhou (Eds.), Evolutionary Multi-Criterion Optimization : 11th International Conference, EMO 2021, Shenzhen, China, March 28–31, 2021, Proceedings (pp. 619-631). Springer. Lecture notes in computer science, 12654. https://doi.org/10.1007/978-3-030-72062-9_49
Julkaistu sarjassa
Lecture notes in computer sciencePäivämäärä
2021Oppiaine
TietotekniikkaMultiobjective Optimization GroupLaskennallinen tiedePäätöksen teko monitavoitteisestiMathematical Information TechnologyMultiobjective Optimization GroupComputational ScienceDecision analytics utilizing causal models and multiobjective optimizationTekijänoikeudet
© Springer Nature Switzerland AG 2021
Comparing interactive evolutionary multiobjective optimization methods is controversial. The main difficulties come from features inherent to interactive solution processes involving real decision makers. The human can be replaced by an artificial decision maker (ADM) to evaluate methods quantitatively. We propose a new ADM to compare reference point based interactive evolutionary methods, where reference points are generated in different ways for the different phases of the solution process. In the learning phase, the ADM explores different parts of the objective space to gain insight about the problem and to identify a region of interest, which is studied more closely in the decision phase. We demonstrate the ADM by comparing interactive versions of RVEA and NSGA-III on benchmark problems with up to 9 objectives. The experiments show that our ADM is efficient and allows repetitive testing to compare interactive evolutionary methods in a meaningful way.
Julkaisija
SpringerEmojulkaisun ISBN
978-3-030-72061-2Konferenssi
International Conference on Evolutionary Multi-Criterion OptimizationKuuluu julkaisuun
Evolutionary Multi-Criterion Optimization : 11th International Conference, EMO 2021, Shenzhen, China, March 28–31, 2021, ProceedingsISSN Hae Julkaisufoorumista
0302-9743Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/52572548
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SA; Profilointi, SALisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Desirable properties of performance indicators for assessing interactive evolutionary multiobjective optimization methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Miettinen, Kaisa (ACM, 2022)Interactive methods support decision makers in finding the most preferred solution in multiobjective optimization problems. They iteratively incorporate the decision maker's preference information to find the best balance ... -
A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Emmerich, Michael; Miettinen, Kaisa (IEEE, 2024)In recent years, interactive evolutionary multiobjective optimization methods have been getting more and more attention. In these methods, a decision maker, who is a domain expert, is iteratively involved in the solution ... -
Assessing the Performance of Interactive Multiobjective Optimization Methods : A Survey
Afsar, Bekir; Miettinen, Kaisa; Ruiz, Francisco (Association for Computing Machinery (ACM), 2021)Interactive methods are useful decision-making tools for multiobjective optimization problems, because they allow a decision-maker to provide her/his preference information iteratively in a comfortable way at the same time ... -
Exploring the Explainable Aspects and Performance of a Learnable Evolutionary Multiobjective Optimization Method
Misitano, Giovanni (Association for Computing Machinery (ACM), 2024)Multiobjective optimization problems have multiple conflicting objective functions to be optimized simultaneously. The solutions to these problems are known as Pareto optimal solutions, which are mathematically incomparable. ... -
Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker
Afsar, Bekir; Ruiz, Ana B.; Miettinen, Kaisa (Springer Science+Business Media, 2023)Solving multiobjective optimization problems with interactive methods enables a decision maker with domain expertise to direct the search for the most preferred trade-offs with preference information and learn about the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.