Optimal solutions for a free boundary problem for crystal growth
Neittaanmäki P., Seidman T. (1989). Optimal solutions for a free boundary problem for crystal growth. In F. Kappel, K. Kunich & W. Schappacher (Eds) Control and Estimation of Distributed Parameter System, pp. 323-334.
Päivämäärä
1989Pääsyrajoitukset
Tekijänoikeudet
© Birkhäuser
We consider a free boundary problem modeling the growth / dissolution of a crystal in a radially symmetric setting. Existence of an optimal boundary control, minimizing a cost functional of a standard "integral-quadratic" form, is already known and we here consider the characterization and computation of such an optimal control.
Julkaisija
BirkhäuserKuuluu julkaisuun
Control and Estimation of Distributed Parameter SystemAsiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Systematic derivation of partial differential equations for second order boundary value problems
Kettunen, Lauri; Rossi, Tuomo (John Wiley & Sons, 2023)Software systems designed to solve second order boundary value problems are typically restricted to hardwired lists of partial differential equations. In order to come up with more flexible systems, we introduce a systematic ... -
On some partial data Calderón type problems with mixed boundary conditions
Covi, Giovanni; Rüland, Angkana (Elsevier, 2021)In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal ... -
On the a posteriori error analysis for linear Fokker-Planck models in convection-dominated diffusion problems
Matculevich, Svetlana; Wolfmayr, Monika (Elsevier, 2018)This work is aimed at the derivation of reliable and efficient a posteriori error estimates for convection-dominated diffusion problems motivated by a linear Fokker–Planck problem appearing in computational neuroscience. ... -
Stability of degenerate parabolic Cauchy problems
Lukkari, Teemu; Parviainen, Mikko (American Institute of Mathematical Sciences, 2015)We prove that solutions to Cauchy problems related to the p-parabolic equations are stable with respect to the nonlinearity exponent p. More specifically, solutions with a fixed initial trace converge in an L q -space ... -
Shape optimization utilizing consistent sensitivities
Toivanen, Jukka (University of Jyväskylä, 2010)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.