Näytä suppeat kuvailutiedot

dc.contributor.authorNeittaanmäki, Pekka
dc.contributor.authorSeidman, Thomas I.
dc.date.accessioned2019-03-06T13:01:04Z
dc.date.available2019-03-06T13:01:04Z
dc.date.issued1989fi
dc.identifier.citationNeittaanmäki P., Seidman T. (1989). Optimal solutions for a free boundary problem for crystal growth. In F. Kappel, K. Kunich & W. Schappacher (Eds) <em>Control and Estimation of Distributed Parameter System</em>, pp. 323-334.
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/63049
dc.description.abstractWe consider a free boundary problem modeling the growth / dissolution of a crystal in a radially symmetric setting. Existence of an optimal boundary control, minimizing a cost functional of a standard "integral-quadratic" form, is already known and we here consider the characterization and computation of such an optimal control.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherBirkhäuser
dc.relation.ispartofControl and Estimation of Distributed Parameter System
dc.rightsIn Copyright
dc.subject.otherfree boundary problemfi
dc.subject.othernonlinearfi
dc.subject.otherparabolicfi
dc.subject.otherpartial differential equationfi
dc.subject.otherboundary controlfi
dc.subject.otheroptimal controlfi
dc.subject.otheroptimality conditionsfi
dc.subject.othercomputationfi
dc.titleOptimal solutions for a free boundary problem for crystal growthfi
dc.typebook part
dc.identifier.urnURN:NBN:fi:jyu-201903061758
dc.contributor.laitosfi
dc.contributor.laitosDepartment of Mathematicsen
dc.contributor.oppiaine
dc.type.urihttp://purl.org/eprint/type/BookItem
dc.description.version
eprint.status
dc.type.coarhttp://purl.org/coar/resource_type/c_3248
dc.description.reviewstatuspeerReviewed
dc.format.pagerange323-334
dc.type.versionpublishedVersion
dc.rights.copyright© Birkhäuser
dc.rights.accesslevelrestrictedAccessfi
dc.type.publicationbookPart
dc.format.contentfulltext
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright