Stability of degenerate parabolic Cauchy problems
Lukkari, T., & Parviainen, M. (2015). Stability of degenerate parabolic Cauchy problems. Communications on pure and applied analysis, 14(1), 201-216. https://doi.org/10.3934/cpaa.2015.14.201
Published in
Communications on pure and applied analysisDate
2015Copyright
© 2014 American Institute of Mathematical Sciences. This is a final draft version of an article whose final and definitive form has been published by AIMS. Published in this repository with the kind permission of the publisher.
We prove that solutions to Cauchy problems related
to the p-parabolic equations are stable with respect to the nonlinearity
exponent p. More specifically, solutions with a fixed initial
trace converge in an L
q
-space to a solution of the limit problem as
p > 2 varies.
Publisher
American Institute of Mathematical SciencesISSN Search the Publication Forum
1534-0392Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/23888739
Metadata
Show full item recordCollections
Related items
Showing items with similar title or keywords.
-
Increasing stability in the linearized inverse Schrödinger potential problem with power type nonlinearities
Lu, Shuai; Salo, Mikko; Xu, Boxi (IOP Publishing, 2022)We consider increasing stability in the inverse Schrödinger potential problem with power type nonlinearities at a large wavenumber. Two linearization approaches, with respect to small boundary data and small potential ... -
Elliptic Harnack's inequality for a singular nonlinear parabolic equation in non‐divergence form
Kurkinen, Tapio; Parviainen, Mikko; Siltakoski, Jarkko (Wiley-Blackwell, 2023)We prove an elliptic Harnack's inequality for a general form of a parabolic equation that generalizes both the standard parabolic -Laplace equation and the normalized version that has been proposed in stochastic game theory. ... -
Asymptotic mean value formulas for parabolic nonlinear equations
Blanc, Pablo; Charro, Fernando; Manfredi, Juan J.; Rossi, Julio D. (Union Matematica Argentina, 2022)In this paper we characterize viscosity solutions to nonlinear parabolic equations (including parabolic Monge–Ampère equations) by asymptotic mean value formulas. Our asymptotic mean value formulas can be interpreted from ... -
Harnack’s inequalities and boundary regularity for a general nonlinear parabolic equation in non-divergence form
Kurkinen, Tapio (Jyväskylän yliopisto, 2024)Tässä väitöskirjassa tutkitaan epälineaarista parabolista yhtälöä, jonka erikoistapauksina saadaan <i>p</i>-parabolinen yhtälö ja normalisoitu <i>p</i>-parabolinen yhtälö. Yhtälö poikkeustapauksia lukuunottamatta ei ole ... -
Asymptotical convergence evaluation for a parabolic problem arising in circuit theory
Marinov, Corneliu A.; Neittaanmäki, Pekka (Wiley, 1990)