dc.contributor.author | Brander, Tommi | |
dc.contributor.author | Ilmavirta, Joonas | |
dc.contributor.author | Kar, Manas | |
dc.date.accessioned | 2018-12-21T06:32:25Z | |
dc.date.available | 2018-12-21T06:32:25Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Brander, T., Ilmavirta, J., & Kar, M. (2018). Superconductive and insulating inclusions for linear and non-linear conductivity equations. <i>Inverse Problems and Imaging</i>, <i>12</i>(1), 91-123. <a href="https://doi.org/10.3934/ipi.2018004" target="_blank">https://doi.org/10.3934/ipi.2018004</a> | |
dc.identifier.other | CONVID_27844129 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/60775 | |
dc.description.abstract | We detect an inclusion with infinite conductivity from
boundary measurements represented by the Dirichlet-to-Neumann
map for the conductivity equation. We use both the enclosure
method and the probe method. We use the enclosure method to
also prove similar results when the underlying equation is the quasilinear p-Laplace equation. Further, we rigorously treat the forward
problem for the partial differential equation div(σ|∇u|
p−2∇u) = 0
where the measurable conductivity σ : Ω → [0, ∞] is zero or infinity
in large sets and 1 < p < ∞. | fi |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | American Institute of Mathematical Sciences | |
dc.relation.ispartofseries | Inverse Problems and Imaging | |
dc.rights | In Copyright | |
dc.subject.other | p-harmonic functions | |
dc.subject.other | Calderón problem | |
dc.subject.other | inverse boundary value problem | |
dc.subject.other | enclosure method | |
dc.subject.other | probe method | |
dc.title | Superconductive and insulating inclusions for linear and non-linear conductivity equations | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201812175155 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2018-12-17T10:15:18Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 91-123 | |
dc.relation.issn | 1930-8337 | |
dc.relation.numberinseries | 1 | |
dc.relation.volume | 12 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2018 American Institute of Mathematical Sciences. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | inkluusio | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18355 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.3934/ipi.2018004 | |
dc.type.okm | A1 | |