Superconductive and insulating inclusions for linear and non-linear conductivity equations
Brander, T., Ilmavirta, J., & Kar, M. (2018). Superconductive and insulating inclusions for linear and non-linear conductivity equations. Inverse Problems and Imaging, 12(1), 91-123. https://doi.org/10.3934/ipi.2018004
Julkaistu sarjassa
Inverse Problems and ImagingPäivämäärä
2018Tekijänoikeudet
© 2018 American Institute of Mathematical Sciences.
We detect an inclusion with infinite conductivity from
boundary measurements represented by the Dirichlet-to-Neumann
map for the conductivity equation. We use both the enclosure
method and the probe method. We use the enclosure method to
also prove similar results when the underlying equation is the quasilinear p-Laplace equation. Further, we rigorously treat the forward
problem for the partial differential equation div(σ|∇u|
p−2∇u) = 0
where the measurable conductivity σ : Ω → [0, ∞] is zero or infinity
in large sets and 1 < p < ∞.
Julkaisija
American Institute of Mathematical SciencesISSN Hae Julkaisufoorumista
1930-8337Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/27844129
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A linear approach for the nonlinear distributed parameter identification problem
Tai, Xue-Cheng; Neittaanmäki, Pekka (Birkhäuser, 1991)In identifying the nonlinear distributed parameters we propose an approach, which enables us to identify the nonlinear distributed parameters by just solving linear problems. In this approach we just need to identify linear ... -
The Linearized Calderón Problem on Complex Manifolds
Guillarmou, Colin; Salo, Mikko; Tzou, Leo (Springer, 2019)In this note we show that on any compact subdomain of a K¨ahler manifold that admits sufficiently many global holomorphic functions, the products of harmonic functions form a complete set. This gives a positive answer to ... -
Calderón problem for the p-Laplace equation : First order derivative of conductivity on the boundary
Brander, Tommi (American Mathematical Society, 2016)We recover the gradient of a scalar conductivity defined on a smooth bounded open set in Rd from the Dirichlet to Neumann map arising from the p-Laplace equation. For any boundary point we recover the gradient using Dirichlet ... -
On some partial data Calderón type problems with mixed boundary conditions
Covi, Giovanni; Rüland, Angkana (Elsevier, 2021)In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal ... -
Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations
Lassas, Matti; Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko (European Mathematical Society Publishing House, 2021)We study various partial data inverse boundary value problems for the semilinear elliptic equation Δu + a(x, u) = 0 in a domain in Rn by using the higher order linearization technique introduced by Lassas– Liimatainen–Lin–Salo ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.