dc.contributor.author | Koskela, Pekka | |
dc.contributor.author | Nandi, Debanjan | |
dc.contributor.author | Nicolau, Artur | |
dc.date.accessioned | 2018-10-15T10:57:06Z | |
dc.date.available | 2018-10-15T10:57:06Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Koskela, P., Nandi, D., & Nicolau, A. (2018). Accessible parts of boundary for simply connected domains. <i>Proceedings of the American Mathematical Society</i>, <i>146</i>(8), 3403-3412. <a href="https://doi.org/10.1090/proc/13994" target="_blank">https://doi.org/10.1090/proc/13994</a> | |
dc.identifier.other | CONVID_28098665 | |
dc.identifier.other | TUTKAID_77890 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/59827 | |
dc.description.abstract | For a bounded simply connected domain Ω ⊂ R2, any point z ∈ Ω and any 0 < α < 1, we give a lower bound for the α-dimensional Hausdorff content of the set of points in the boundary of Ω which can be joined to z by a John curve with a suitable John constant depending only on α, in terms of the distance of z to ∂Ω. In fact this set in the boundary contains the intersection ∂Ωz ∩ ∂Ω of the boundary of a John subdomain Ωz of Ω, centered at z, with the boundary of Ω. This may be understood as a quantitative version of a result of Makarov. This estimate is then applied to obtain the pointwise version of a weighted Hardy inequality. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | American Mathematical Society | |
dc.relation.ispartofseries | Proceedings of the American Mathematical Society | |
dc.rights | In Copyright | |
dc.subject.other | simply connected domains | |
dc.subject.other | John domains | |
dc.subject.other | Hardy inequality | |
dc.title | Accessible parts of boundary for simply connected domains | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-201810034325 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2018-10-03T09:15:28Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 3403-3412 | |
dc.relation.issn | 0002-9939 | |
dc.relation.numberinseries | 8 | |
dc.relation.volume | 146 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2018 American Mathematical Society | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 307333 HY | |
dc.subject.yso | epäyhtälöt | |
dc.subject.yso | funktioteoria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p15720 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18494 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1090/proc/13994 | |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Academy of Finland | en |
jyx.fundingprogram | Huippuyksikkörahoitus, SA | fi |
jyx.fundingprogram | Centre of Excellence, AoF | en |
jyx.fundinginformation | The third author was partially supported by the grants 2014SGR75 of Generalitat de Catalunya and MTM2014-51824-P and MTM2017-85666-P of Ministerio de Ciencia e Innovación. The first and second authors were partially supported by the Academy of Finland grant 307333. | |
dc.type.okm | A1 | |