Weighted Hardy inequalities and the boundary size
Julkaistu sarjassa
Report / University of Jyväskylä. Department of Mathematics and StatisticsTekijät
Päivämäärä
2008Oppiaine
MatematiikkaJulkaisija
University of JyväskyläISBN
978-951-39-3347-0ISSN Hae Julkaisufoorumista
1457-8905Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Väitöskirjat [3559]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Weighted Hardy inequalities beyond Lipschitz domains
Lehrbäck, Juha (American Mathematical Society, 2014)It is a well-known fact that in a Lipschitz domain Ω ⊂ R n a p-Hardy inequality, with weight dist(x, ∂Ω)β , holds for all u ∈ C ∞0 (Ω) whenever β < p − 1. We show that actually the same is true under the sole assumption ... -
Self-improvement of weighted pointwise inequalities on open sets
Eriksson-Bique, Sylvester; Lehrbäck, Juha; Vähäkangas, Antti V. (Elsevier BV, 2020)We prove a general self-improvement property for a family of weighted pointwise inequalities on open sets, including pointwise Hardy inequalities with distance weights. For this purpose we introduce and study the classes ... -
On the BBM-Phenomenon in Fractional Poincaré–Sobolev Inequalities with Weights
Hurri-Syrjänen, Ritva; Martínez-Perales, Javier C.; Pérez, Carlos; Vähäkangas, Antti V. (Oxford University Press (OUP), 2023)In this paper, we unify and improve some of the results of Bourgain, Brezis, and Mironescu and the weighted Poincaré–Sobolev estimate by Fabes, Kenig, and Serapioni. More precisely, we get weighted counterparts of the ... -
Weighted norm inequalities in a bounded domain by the sparse domination method
Kurki, Emma-Karoliina; Vähäkangas, Antti V. (Springer, 2021)We prove a local two-weight Poincaré inequality for cubes using the sparse domination method that has been influential in harmonic analysis. The proof involves a localized version of the Fefferman–Stein inequality for the ... -
Accessible parts of boundary for simply connected domains
Koskela, Pekka; Nandi, Debanjan; Nicolau, Artur (American Mathematical Society, 2018)For a bounded simply connected domain Ω ⊂ R2, any point z ∈ Ω and any 0 < α < 1, we give a lower bound for the α-dimensional Hausdorff content of the set of points in the boundary of Ω which can be joined to z by a John ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.