Mappings of generalized finite distortion and continuity
Doležalová, A., Kangasniemi, I., & Onninen, J. (2024). Mappings of generalized finite distortion and continuity. Journal of the London Mathematical Society, 109(1), Article e12835. https://doi.org/10.1112/jlms.12835
Published in
Journal of the London Mathematical SocietyDate
2024Discipline
MatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköMathematicsAnalysis and Dynamics Research (Centre of Excellence)Copyright
© 2023 the Authors
We study continuity properties of Sobolev mappings𝑓∈𝑊1,𝑛loc(Ω,ℝ𝑛),𝑛⩾2, that satisfy the following generalized finite distortion inequality||𝐷𝑓(𝑥)||𝑛⩽𝐾(𝑥)𝐽𝑓(𝑥) + Σ(𝑥)for almost every𝑥∈ℝ𝑛.Here𝐾∶ Ω→[1,∞)andΣ∶ Ω→[0,∞)are measurable functions. Note that whenΣ≡0, we recover the class of mappings of finite distortion, which are always continuous. The continuity of arbitrary solutions, however, turns out to be an intricate question. We fully solve the continuity problem in the case of bounded distortion𝐾∈𝐿∞(Ω), where a sharp condition for continuity is thatΣis in the Zygmund spaceΣlog𝜇(𝑒 + Σ) ∈ 𝐿1loc(Ω)for some𝜇>𝑛−1.We also show that one can slightly relax the boundedness assumption on𝐾to an exponential class exp(𝜆𝐾) ∈𝐿1loc(Ω)with𝜆>𝑛+1, and still obtain continuous solutions when Σlog𝜇(𝑒 + Σ) ∈ 𝐿1loc(Ω)with𝜇>𝜆. On the other hand, for all𝑝,𝑞 ∈ [1,∞] with 𝑝−1+𝑞−1=1, we construct a discontinuous solution with 𝐾∈𝐿𝑝loc(Ω)andΣ∕𝐾 ∈ 𝐿𝑞loc(Ω), including an example withΣ∈𝐿∞loc(Ω)and𝐾∈𝐿1loc(Ω).
...
Publisher
Wiley-BlackwellISSN Search the Publication Forum
0024-6107Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/194528215
Metadata
Show full item recordCollections
Additional information about funding
GA CR, Grant/Award Number:P201/21-01976S; Schemes at CU,Grant/Award Number:CZ.02.2.69/0.0/0.0/19 073/0016935; NSF,Grant/Award Number: DMS-2154943License
Related items
Showing items with similar title or keywords.
-
Mappings of finite distortion : size of the branch set
Guo, Chang-Yu; Hencl, Stanislav; Tengvall, Ville (De Gruyter, 2020)We study the branch set of a mapping between subsets of Rn, i.e., the set where a given mapping is not defining a local homeomorphism. We construct several sharp examples showing that the branch set or its image can have ... -
Mappings of Finite Distortion : Compactness of the Branch Set
Kauranen, Aapo; Luisto, Rami; Tengvall, Ville (Hebrew University Magnes Press; Springer, 2021)We show that an entire branched cover of finite distortion cannot have a compact branch set if its distortion satisfies a certain asymptotic growth condition. We furthermore show that this bound is strict by constructing ... -
Accessible parts of boundary for simply connected domains
Koskela, Pekka; Nandi, Debanjan; Nicolau, Artur (American Mathematical Society, 2018)For a bounded simply connected domain Ω ⊂ R2, any point z ∈ Ω and any 0 < α < 1, we give a lower bound for the α-dimensional Hausdorff content of the set of points in the boundary of Ω which can be joined to z by a John ... -
Mappings of finite distortion from generalized manifolds
Kirsilä, Ville (American Mathematical Society, 2014) -
Generalized dimension distortion under Sobolev mappings
Zapadinskaya, Aleksandra (University of Jyväskylä, 2011)