Accessible parts of boundary for simply connected domains
Koskela, P., Nandi, D., & Nicolau, A. (2018). Accessible parts of boundary for simply connected domains. Proceedings of the American Mathematical Society, 146(8), 3403-3412. https://doi.org/10.1090/proc/13994
Julkaistu sarjassa
Proceedings of the American Mathematical SocietyPäivämäärä
2018Tekijänoikeudet
© 2018 American Mathematical Society
For a bounded simply connected domain Ω ⊂ R2, any point z ∈ Ω and any 0 < α < 1, we give a lower bound for the α-dimensional Hausdorff content of the set of points in the boundary of Ω which can be joined to z by a John curve with a suitable John constant depending only on α, in terms of the distance of z to ∂Ω. In fact this set in the boundary contains the intersection ∂Ωz ∩ ∂Ω of the boundary of a John subdomain Ωz of Ω, centered at z, with the boundary of Ω. This may be understood as a quantitative version of a result of Makarov. This estimate is then applied to obtain the pointwise version of a weighted Hardy inequality.
Julkaisija
American Mathematical SocietyISSN Hae Julkaisufoorumista
0002-9939Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28098665
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Huippuyksikkörahoitus, SALisätietoja rahoituksesta
The third author was partially supported by the grants 2014SGR75 of Generalitat de Catalunya and MTM2014-51824-P and MTM2017-85666-P of Ministerio de Ciencia e Innovación. The first and second authors were partially supported by the Academy of Finland grant 307333.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Radó-Kneser-Choquet Theorem for simply connected domains (p-harmonic setting)
Iwaniec, Tadeusz; Onninen, Jani (American Mathematical Society, 2019)A remarkable result known as Rad´o-Kneser-Choquet theorem asserts that the harmonic extension of a homeomorphism of the boundary of a Jordan domain ⌦ ⇢ R2 onto the boundary of a convex domain Q ⇢ R2 takes ⌦ di↵eomorphically ... -
Mappings of generalized finite distortion and continuity
Doležalová, Anna; Kangasniemi, Ilmari; Onninen, Jani (Wiley-Blackwell, 2024)We study continuity properties of Sobolev mappings𝑓∈𝑊1,𝑛loc(Ω,ℝ𝑛),𝑛⩾2, that satisfy the following generalized finite distortion inequality||𝐷𝑓(𝑥)||𝑛⩽𝐾(𝑥)𝐽𝑓(𝑥) + Σ(𝑥)for almost every𝑥∈ℝ𝑛.Here𝐾∶ Ω→[1,∞)andΣ∶ ... -
Weighted Hardy inequalities and the boundary size
Lehrbäck, Juha (University of Jyväskylä, 2008) -
Optimization of the domain in elliptic variational inequalities
Neittaanmäki, Pekka; Sokolowski, J.; Zolesio, J. P. (University of Jyväskylä, 1986) -
Pointwise Inequalities for Sobolev Functions on Outward Cuspidal Domains
Eriksson-Bique, Sylvester; Koskela, Pekka; Malý, Jan; Zhu, Zheng (Oxford University Press (OUP), 2022)We show that the 1st-order Sobolev spaces W1,p(Ωψ),1
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.