Artificial Decision Maker Driven by PSO : An Approach for Testing Reference Point Based Interactive Methods
Barba-González, C., Ojalehto, V., García-Nieto, J., Nebro, A. J., Miettinen, K., & Aldana-Montes, J. F. (2018). Artificial Decision Maker Driven by PSO : An Approach for Testing Reference Point Based Interactive Methods. In A. Auger, C. M. Fonseca, N. Lourenço, P. Machado, L. Paquete, & D. Whitley (Eds.), Parallel Problem Solving from Nature - PPSN XV : 15th International Conference, Coimbra, Portugal, September 8–12, 2018, Proceedings, Part 1 (pp. 274-285). Springer International Publishing. Lecture Notes in Computer Science, 11101. https://doi.org/10.1007/978-3-319-99253-2_22
Julkaistu sarjassa
Lecture Notes in Computer ScienceTekijät
Toimittajat
Päivämäärä
2018Tekijänoikeudet
© Springer International Publishing AG, part of Springer Nature 2018.
Over the years, many interactive multiobjective optimization methods based on a reference point have been proposed. With a reference point, the decision maker indicates desirable objective function values to iteratively direct the solution process. However, when analyzing the performance of these methods, a critical issue is how to systematically involve decision makers. A recent approach to this problem is to replace a decision maker with an artificial one to be able to systematically evaluate and compare reference point based interactive methods in controlled experiments. In this study, a new artificial decision maker is proposed, which reuses the dynamics of particle swarm optimization for guiding the generation of consecutive reference points, hence, replacing the decision maker in preference articulation. We use the artificial decision maker to compare interactive methods. We demonstrate the artificial decision maker using the DTLZ benchmark problems with 3, 5 and 7 objectives to compare R-NSGA-II and WASF-GA as interactive methods. The experimental results show that the proposed artificial decision maker is useful and efficient. It offers an intuitive and flexible mechanism to capture the current context when testing interactive methods for decision making.
...
Julkaisija
Springer International PublishingEmojulkaisun ISBN
978-3-319-99252-5Konferenssi
International Conference on Parallel Problem Solving From NatureKuuluu julkaisuun
Parallel Problem Solving from Nature - PPSN XV : 15th International Conference, Coimbra, Portugal, September 8–12, 2018, Proceedings, Part 1ISSN Hae Julkaisufoorumista
0302-9743Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28240718
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
This work was partially funded by Grants TIN2017-86049-R (Spanish MICINN) and P12-TIC-1519 (PAIDI). C. Barba-González was supported by Grant BES-2015-072209 (Spanish MICINN) and University of Jyväskylä. J. García-Nieto is the recipient Post-Doct fellowship of “Plan Propio” at Universidad de Málaga. This work was supported on the part of V. Ojalehto by the Academy of Finland (grant number 287496).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Towards explainable interactive multiobjective optimization : R-XIMO
Misitano, Giovanni; Afsar, Bekir; Lárraga, Giomara; Miettinen, Kaisa (Springer Science and Business Media LLC, 2022)In interactive multiobjective optimization methods, the preferences of a decision maker are incorporated in a solution process to find solutions of interest for problems with multiple conflicting objectives. Since multiple ... -
Desirable properties of performance indicators for assessing interactive evolutionary multiobjective optimization methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Miettinen, Kaisa (ACM, 2022)Interactive methods support decision makers in finding the most preferred solution in multiobjective optimization problems. They iteratively incorporate the decision maker's preference information to find the best balance ... -
DESDEO: The Modular and Open Source Framework for Interactive Multiobjective Optimization
Misitano, Giovanni; Saini, Bhupinder Singh; Afsar, Bekir; Shavazipour, Babooshka; Miettinen Kaisa (Institute of Electrical and Electronics Engineers (IEEE), 2021)Interactive multiobjective optimization methods incorporate preferences from a human decision maker in the optimization process iteratively. This allows the decision maker to focus on a subset of solutions, learn about the ... -
Interactive data-driven multiobjective optimization of metallurgical properties of microalloyed steels using the DESDEO framework
Saini, Bhupinder Singh; Chakrabarti, Debalay; Chakraborti, Nirupam; Shavazipour, Babooshka; Miettinen, Kaisa (Elsevier BV, 2023)Solving real-life data-driven multiobjective optimization problems involves many complicated challenges. These challenges include preprocessing the data, modelling the objective functions, getting a meaningful formulation ... -
INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning
Misitano, Giovanni (2020)Tässä tutkielmassa kehitetään interaktiivinen menetelmä – nimeltään INFRINGER – monitavoiteoptimoinnin ongelmien ratkaisemisen tueksi. Menetelmä kykenee oppimaan päätöksentekijän mieltymykset (preferenssit), ja esittää ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.