INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning
Tekijät
Päivämäärä
2020Tekijänoikeudet
Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.
Tässä tutkielmassa kehitetään interaktiivinen menetelmä –
nimeltään INFRINGER – monitavoiteoptimoinnin ongelmien ratkaisemisen tueksi. Menetelmä
kykenee oppimaan päätöksentekijän mieltymykset (preferenssit), ja esittää mieltymyksiä
käyttäen arvofunktiota mallinaan. Arvofunktio mallinnetaan käyttäen koneoppia, jossa sovelletaan todennäköisyyksiä hyödyntäviä sääntöpohjaisia järjestelmiä. Kehitettyä menetelmää
hyödynnetään tapaustutkimuksessa, jossa päätöksentekijää tuetaan Suomen metsätalouteen
liittyvän monitavoitteisen optimointiongelman ratkaisemisessa. Tapaustutkimuksen tulosten
pohjalta kehitetyn menetelmän kykyä tukea päätöksentekijää, ja oppia päätöksentekijän mieltymykset,
arvioidaan. Lopuksi kehitettyä menetelmää verrataan lyhyesti vastaaviin kirjallisuudessa esiintyviin menetelmiin, ja menetelmän kelpoisuutta selitettävänä koneopin mallina pohditaan. An interactive method – INFRINGER – for solving multi-objective optimization
problems is developed in this thesis. The method is able to learn a decision maker’s preferences using a value function model. The value function is modelled using machine learning
in conjunction with belief-rule based systems. A case study, consisting of a problem in
Finnish forestation, is then conducted where a human decision maker is aided in the decision making process using the developed method. Based on the results of the case study, the
developed method is assessed in its ability to aid the decision maker to reach a satisfying solution, and its ability to elicit the decision maker’s preferences. Lastly, the method is briefly
compared qualitatively to other similar methods in existing literature, and the viability of the
method as a potential explainable model is briefly discussed.
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29556]
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Flexible data driven inventory management with interactive multiobjective lot size optimization
Heikkinen, Risto; Sipilä, Juha; Ojalehto, Vesa; Miettinen, Kaisa (Inderscience Publishers, 2023)We study data-driven decision support and formalise a path from data to decision making. We focus on lot sizing in inventory management with stochastic demand and propose an interactive multi-objective optimisation approach. ... -
Multiobjective shape design in a ventilation system with a preference-driven surrogate-assisted evolutionary algorithm
Chugh, Tinkle; Kratky, Tomas; Miettinen, Kaisa; Jin, Yaochu; Makkonen, Pekka (ACM, 2019)We formulate and solve a real-world shape design optimization problem of an air intake ventilation system in a tractor cabin by using a preference-based surrogate-assisted evolutionary multiobjective optimization algorithm. ... -
DESDEO: The Modular and Open Source Framework for Interactive Multiobjective Optimization
Misitano, Giovanni; Saini, Bhupinder Singh; Afsar, Bekir; Shavazipour, Babooshka; Miettinen Kaisa (Institute of Electrical and Electronics Engineers (IEEE), 2021)Interactive multiobjective optimization methods incorporate preferences from a human decision maker in the optimization process iteratively. This allows the decision maker to focus on a subset of solutions, learn about the ... -
A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Emmerich, Michael; Miettinen, Kaisa (IEEE, 2024)In recent years, interactive evolutionary multiobjective optimization methods have been getting more and more attention. In these methods, a decision maker, who is a domain expert, is iteratively involved in the solution ... -
On Dealing with Uncertainties from Kriging Models in Offline Data-Driven Evolutionary Multiobjective Optimization
Mazumdar, Atanu; Chugh, Tinkle; Miettinen, Kaisa; López-Ibáñez, Manuel (Springer International Publishing, 2019)Many works on surrogate-assisted evolutionary multiobjective optimization have been devoted to problems where function evaluations are time-consuming (e.g., based on simulations). In many real-life optimization problems, ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.