Näytä suppeat kuvailutiedot

dc.contributor.authorBjörn, Anders
dc.contributor.authorBjörn, Jana
dc.contributor.authorGianazza, Ugo
dc.contributor.authorSiljander, Juhana
dc.date.accessioned2018-08-20T10:12:50Z
dc.date.available2018-08-20T10:12:50Z
dc.date.issued2018
dc.identifier.citationBjörn, A., Björn, J., Gianazza, U., & Siljander, J. (2018). Boundary Regularity for the Porous Medium Equation. <i>Archive for Rational Mechanics and Analysis</i>, <i>230</i>(2), 493-538. <a href="https://doi.org/10.1007/s00205-018-1251-3" target="_blank">https://doi.org/10.1007/s00205-018-1251-3</a>
dc.identifier.otherCONVID_28060705
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/59276
dc.description.abstractWe study the boundary regularity of solutions to the porous medium equation ut=Δum in the degenerate range m>1 . In particular, we show that in cylinders the Dirichlet problem with positive continuous boundary data on the parabolic boundary has a solution which attains the boundary values, provided that the spatial domain satisfies the elliptic Wiener criterion. This condition is known to be optimal, and it is a consequence of our main theorem which establishes a barrier characterization of regular boundary points for general—not necessarily cylindrical—domains in Rn+1 . One of our fundamental tools is a new strict comparison principle between sub- and superparabolic functions, which makes it essential for us to study both nonstrict and strict Perron solutions to be able to develop a fruitful boundary regularity theory. Several other comparison principles and pasting lemmas are also obtained. In the process we obtain a rather complete picture of the relation between sub/superparabolic functions and weak sub/supersolutions.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesArchive for Rational Mechanics and Analysis
dc.rightsCC BY 4.0
dc.subject.otherboundary regularity
dc.subject.otherporous medium equation
dc.titleBoundary Regularity for the Porous Medium Equation
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201808133824
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2018-08-13T12:15:27Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange493-538
dc.relation.issn0003-9527
dc.relation.numberinseries2
dc.relation.volume230
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2018
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s00205-018-1251-3
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0