Show simple item record

dc.contributor.authorBjörn, Anders
dc.contributor.authorBjörn, Jana
dc.contributor.authorGianazza, Ugo
dc.contributor.authorSiljander, Juhana
dc.date.accessioned2018-08-20T10:12:50Z
dc.date.available2018-08-20T10:12:50Z
dc.date.issued2018
dc.identifier.citationBjörn, A., Björn, J., Gianazza, U., & Siljander, J. (2018). Boundary Regularity for the Porous Medium Equation. <i>Archive for Rational Mechanics and Analysis</i>, <i>230</i>(2), 493-538. <a href="https://doi.org/10.1007/s00205-018-1251-3" target="_blank">https://doi.org/10.1007/s00205-018-1251-3</a>
dc.identifier.otherCONVID_28060705
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/59276
dc.description.abstractWe study the boundary regularity of solutions to the porous medium equation ut=Δum in the degenerate range m>1 . In particular, we show that in cylinders the Dirichlet problem with positive continuous boundary data on the parabolic boundary has a solution which attains the boundary values, provided that the spatial domain satisfies the elliptic Wiener criterion. This condition is known to be optimal, and it is a consequence of our main theorem which establishes a barrier characterization of regular boundary points for general—not necessarily cylindrical—domains in Rn+1 . One of our fundamental tools is a new strict comparison principle between sub- and superparabolic functions, which makes it essential for us to study both nonstrict and strict Perron solutions to be able to develop a fruitful boundary regularity theory. Several other comparison principles and pasting lemmas are also obtained. In the process we obtain a rather complete picture of the relation between sub/superparabolic functions and weak sub/supersolutions.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesArchive for Rational Mechanics and Analysis
dc.rightsCC BY 4.0
dc.subject.otherboundary regularity
dc.subject.otherporous medium equation
dc.titleBoundary Regularity for the Porous Medium Equation
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201808133824
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2018-08-13T12:15:27Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange493-538
dc.relation.issn0003-9527
dc.relation.numberinseries2
dc.relation.volume230
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2018
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s00205-018-1251-3
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0