Näytä suppeat kuvailutiedot

dc.contributor.authorZhang, Chi
dc.contributor.authorCong, Fengyu
dc.contributor.authorKujala, Tuomo
dc.contributor.authorLiu, Wenya
dc.contributor.authorLiu, Jia
dc.contributor.authorParviainen, Tiina
dc.contributor.authorRistaniemi, Tapani
dc.date.accessioned2018-04-27T07:06:54Z
dc.date.available2018-04-27T07:06:54Z
dc.date.issued2018
dc.identifier.citationZhang, C., Cong, F., Kujala, T., Liu, W., Liu, J., Parviainen, T., & Ristaniemi, T. (2018). Network Entropy for the Sequence Analysis of Functional Connectivity Graphs of the Brain. <i>Entropy</i>, <i>20</i>(5), Article 311. <a href="https://doi.org/10.3390/e20050311" target="_blank">https://doi.org/10.3390/e20050311</a>
dc.identifier.otherCONVID_28025604
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/57786
dc.description.abstractDynamic representation of functional brain networks involved in the sequence analysis of functional connectivity graphs of the brain (FCGB) gains advances in uncovering evolved interaction mechanisms. However, most of the networks, even the event-related ones, are highly heterogeneous due to spurious interactions, which bring challenges to revealing the change patterns of interactive information in the complex dynamic process. In this paper, we propose a network entropy (NE) method to measure connectivity uncertainty of FCGB sequences to alleviate the spurious interaction problem in dynamic network analysis to realize associations with different events during a complex cognitive task. The proposed dynamic analysis approach calculated the adjacency matrices from ongoing electroencephalpgram (EEG) in a sliding time-window to form the FCGB sequences. The probability distribution of Shannon entropy was replaced by the connection sequence distribution to measure the uncertainty of FCGB constituting NE. Without averaging, we used time frequency transform of the NE of FCGB sequences to analyze the event-related changes in oscillatory activity in the single-trial traces during the complex cognitive process of driving. Finally, the results of a verification experiment showed that the NE of the FCGB sequences has a certain time-locked performance for different events related to driver fatigue in a prolonged driving task. The time errors between the extracted time of high-power NE and the recorded time of event occurrence were distributed within the range [−30 s, 30 s] and 90.1% of the time errors were distributed within the range [−10 s, 10 s]. The high correlation (r = 0.99997, p < 0.001) between the timing characteristics of the two types of signals indicates that the NE can reflect the actual dynamic interaction states of brain. Thus, the method may have potential implications for cognitive studies and for the detection of physiological states.
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMDPI
dc.relation.ispartofseriesEntropy
dc.subject.othernetwork entropy
dc.subject.otherconnectivity
dc.subject.otherbrain network
dc.subject.otherdynamic network analysis
dc.subject.otherevent-related analysis
dc.subject.otherdriver fatigue
dc.titleNetwork Entropy for the Sequence Analysis of Functional Connectivity Graphs of the Brain
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201804262379
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosPsykologian laitosfi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.laitosDepartment of Psychologyen
dc.contributor.oppiaineKognitiotiedefi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineTilastotiedefi
dc.contributor.oppiainePsykologiafi
dc.contributor.oppiaineMonitieteinen aivotutkimuskeskusfi
dc.contributor.oppiaineHyvinvoinnin tutkimuksen yhteisöfi
dc.contributor.oppiaineCognitive Scienceen
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineStatisticsen
dc.contributor.oppiainePsychologyen
dc.contributor.oppiaineCentre for Interdisciplinary Brain Researchen
dc.contributor.oppiaineSchool of Wellbeingen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2018-04-26T12:15:13Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1099-4300
dc.relation.numberinseries5
dc.relation.volume20
dc.type.versionpublishedVersion
dc.rights.copyright© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons License.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoverkkoteoria
dc.subject.ysoentropia
dc.subject.ysoaivot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p2543
jyx.subject.urihttp://www.yso.fi/onto/yso/p5009
jyx.subject.urihttp://www.yso.fi/onto/yso/p7040
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/e20050311
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons License.
Ellei muuten mainita, aineiston lisenssi on © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons License.