Jacobian of weak limits of Sobolev homeomorphisms
Hencl, S., & Onninen, J. (2018). Jacobian of weak limits of Sobolev homeomorphisms. Advances in Calculus of Variations, 11(1), 65-73. https://doi.org/10.1515/acv-2016-0005
Julkaistu sarjassa
Advances in Calculus of VariationsPäivämäärä
2018Tekijänoikeudet
© Walter de Gruyter GmbH, 2018. Published in this repository with the kind permission of the publisher.
Let Ω be a domain in Rn, where n=2,3. Suppose that a sequence of Sobolev homeomorphisms fk:Ω→Rn with positive Jacobian determinants, J(x,fk)>0, converges weakly in W1,p(Ω,Rn), for some p⩾1, to a mapping f. We show that J(x,f)⩾0 a.e. in Ω. Generalizations to higher dimensions are also given.
Julkaisija
Walter de Gruyter GmbHISSN Hae Julkaisufoorumista
1864-8258Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/27838784
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Jacobian of weak limits of Sobolev homeomorphisms
Hencl, Stanislav; Onninen, Jani (Walter de Gruyter GmbH, 2018)Let Ω be a domain in Rn, where n=2,3. Suppose that a sequence of Sobolev homeomorphisms fk:Ω→Rn with positive Jacobian determinants, J(x,fk)>0, converges weakly in W1,p(Ω,Rn), for some p⩾1, to a mapping f. We show that ... -
Approximation of W1,p Sobolev homeomorphism by diffeomorphisms and the signs of the Jacobian
Campbell, D.; Hencl, S.; Tengvall, Ville (Elsevier Inc., 2018)Let Ω ⊂ R n, n ≥ 4, be a domain and 1 ≤ p < [n/2], where [a] stands for the integer part of a. We construct a homeomorphism f ∈ W1,p((−1, 1)n, R n) such that Jf = det Df > 0 on a set of positive measure and Jf < 0 on a set ... -
Poistuvuus kvasikonformi- ja Sobolev-kuvauksille
Takanen, Jyrki (2019)Tämän tutkielman tarkoituksena on tutkia kompaktien joukkojen poistuvuutta jatkuville Sobolev-funktioille sekä kvasikonformikuvauksille. Työssä esitetään tunnettuja tuloksia poistuvista joukoista sekä esimerkkejä joukoista, ... -
Approximation of W1,p Sobolev Homeomorphism by Diffeomorphism and the Signs of the Jacobian
Campbell, Daniel; Hencl, Stanislav; Tengvall, Ville (Elsevier, 2016) -
Sobolev homeomorphic extensions onto John domains
Koskela, Pekka; Koski, Aleksis; Onninen, Jani (Elsevier Inc., 2020)Given the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.