Jacobian of weak limits of Sobolev homeomorphisms
Hencl, S., & Onninen, J. (2018). Jacobian of weak limits of Sobolev homeomorphisms. Advances in Calculus of Variations, 11 (1), 65-73. doi:10.1515/acv-2016-0005
Julkaistu sarjassa
Advances in Calculus of VariationsPäivämäärä
2018Oppiaine
MatematiikkaTekijänoikeudet
© 2018 Walter de Gruyter GmbH. Published in this repository with the kind permission of the publisher.
Let Ω be a domain in Rn, where n=2,3. Suppose that a sequence of Sobolev homeomorphisms fk:Ω→Rn with positive Jacobian determinants, J(x,fk)>0, converges weakly in W1,p(Ω,Rn), for some p⩾1, to a mapping f. We show that J(x,f)⩾0 a.e. in Ω. Generalizations to higher dimensions are also given.
Julkaisija
Walter de Gruyter GmbHISSN Hae Julkaisufoorumista
1864-8258Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/27838784
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Jacobian of weak limits of Sobolev homeomorphisms
Hencl, Stanislav; Onninen, Jani (Walter de Gruyter GmbH, 2018)Let Ω be a domain in Rn, where n=2,3. Suppose that a sequence of Sobolev homeomorphisms fk:Ω→Rn with positive Jacobian determinants, J(x,fk)>0, converges weakly in W1,p(Ω,Rn), for some p⩾1, to a mapping f. We show that ... -
Introducing Golden Section in the Mathematics Class to Develop Critical Thinking from the STEAM Perspective
Dana-Picard, Thierry; Hershkovitz, Sara; Lavicza, Zsolt; Fenyvesi, Kristof (SEAMEO STEM-ED, 2021)The Golden Section is a mathematical concept that is one of the most famous examples of connections between mathematics and the arts. Despite its widespread references in various areas of nature, art, architecture, literature, ... -
Approximation of W1,p Sobolev homeomorphism by diffeomorphisms and the signs of the Jacobian
Campbell, D.; Hencl, S.; Tengvall, Ville (Elsevier Inc., 2018)Let Ω ⊂ R n, n ≥ 4, be a domain and 1 ≤ p < [n/2], where [a] stands for the integer part of a. We construct a homeomorphism f ∈ W1,p((−1, 1)n, R n) such that Jf = det Df > 0 on a set of positive measure and Jf < 0 on a set ... -
Infinitesimal Hilbertianity of Locally CAT(κ)-Spaces
Di Marino, Simone; Gigli, Nicola; Pasqualetto, Enrico; Soultanis, Elefterios (Springer, 2021)We show that, given a metric space (Y,d)(Y,d) of curvature bounded from above in the sense of Alexandrov, and a positive Radon measure μμ on YY giving finite mass to bounded sets, the resulting metric measure space ... -
Geometric Inverse Problems : With Emphasis on Two Dimensions
Paternain, Gabriel P.; Salo, Mikko; Uhlmann, Gunther (Cambridge University Press, 2023)This up-to-date treatment of recent developments in geometric inverse problems introduces graduate students and researchers to an exciting area of research. With an emphasis on the two-dimensional case, topics covered ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.