Show simple item record

dc.contributor.authorRepin, Sergey
dc.date.accessioned2017-12-15T10:41:46Z
dc.date.available2020-03-01T22:35:35Z
dc.date.issued2018
dc.identifier.citationRepin, S. (2018). Localized forms of the LBB condition and a posteriori estimates for incompressible media problems. <i>Mathematics and Computers in Simulation</i>, <i>145</i>, 156-170. <a href="https://doi.org/10.1016/j.matcom.2016.05.004" target="_blank">https://doi.org/10.1016/j.matcom.2016.05.004</a>
dc.identifier.otherCONVID_26057632
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/56353
dc.description.abstractThe inf–sup (or LBB) condition plays a crucial role in analysis of viscous flow problems and other problems related to incompressible media. In this paper, we deduce localized forms of this condition that contain a collection of local constants associated with subdomains instead of one global constant for the whole domain. Localized forms of the LBB inequality imply estimates of the distance to the set of divergence free fields. We use them and deduce fully computable bounds of the distance between approximate and exact solutions of boundary value problems arising in the theory of viscous incompressible fluids. The estimates are valid for approximations, which satisfy the incompressibility condition only in a very weak (integral) form. Another important question considered in the paper is how to select proper measures that should be used in error analysis. We show that such a measure is dictated by the respective error identity and discuss properties of the measure for the Stokes, Oseen, and Navier–Stokes problems.
dc.language.isoeng
dc.publisherElsevier BV; International Association for Mathematics and Computers in Simulation
dc.relation.ispartofseriesMathematics and Computers in Simulation
dc.subject.otherincompressible viscous fluids
dc.subject.otherLBB condition
dc.subject.othera posteriori error estimates
dc.titleLocalized forms of the LBB condition and a posteriori estimates for incompressible media problems
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201711234355
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2017-11-23T13:15:11Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange156-170
dc.relation.issn0378-4754
dc.relation.numberinseries0
dc.relation.volume145
dc.type.versionacceptedVersion
dc.rights.copyright© 2016 International Association for Mathematics and Computers in Simulation (IMACS). This is a final draft version of an article whose final and definitive form has been published by Elsevier. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.doi10.1016/j.matcom.2016.05.004
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record