dc.contributor.author Äkkinen, Tuomo dc.contributor.author Guo, Chang-Yu dc.date.accessioned 2017-11-30T09:51:02Z dc.date.available 2017-11-30T09:51:02Z dc.date.issued 2017 dc.identifier.citation Äkkinen, T., & Guo, C.-Y. (2017). Mappings of finite distortion : boundary extensions in uniform domains. Annali di Matematica Pura ed Applicata, 196 (1), 65-83. doi:10.1007/s10231-016-0563-x dc.identifier.other TUTKAID_69434 dc.identifier.uri https://jyx.jyu.fi/handle/123456789/56057 dc.description.abstract In this paper, we consider mappings on uniform domains with exponentially integrable distortion whose Jacobian determinants are integrable. We show that such mappings can be extended to the boundary and moreover these extensions are exponentially integrable with quantitative bounds. This extends previous results of Chang and Marshall [7] on analytic functions, Poggi-Corradini and Rajala [20] and Akkinen and Rajala [2] on mappings of bounded and finite distortion. dc.language.iso eng dc.publisher Springer dc.relation.ispartofseries Annali di Matematica Pura ed Applicata dc.subject.other quasiregular mappings dc.subject.other mappings of finite distortion dc.subject.other weighted capacity dc.subject.other uniform domain dc.subject.other John domain dc.subject.other radial limits dc.title Mappings of finite distortion : boundary extensions in uniform domains dc.type article dc.identifier.urn URN:NBN:fi:jyu-201711294410 dc.contributor.laitos Matematiikan ja tilastotieteen laitos fi dc.contributor.laitos Department of Mathematics and Statistics en dc.contributor.oppiaine Matematiikka dc.type.uri http://purl.org/eprint/type/JournalArticle dc.date.updated 2017-11-29T07:15:08Z dc.type.coar journal article dc.description.reviewstatus peerReviewed dc.format.pagerange 65-83 dc.relation.issn 0373-3114 dc.relation.volume 196 dc.type.version acceptedVersion dc.rights.copyright © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2016. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher. dc.rights.accesslevel openAccess fi dc.relation.doi 10.1007/s10231-016-0563-x
﻿