Zero volume boundary for extension domains from Sobolev to BV
Rajala, T., & Zhu, Z. (2024). Zero volume boundary for extension domains from Sobolev to BV. Revista Matemática Complutense, Early online. https://doi.org/10.1007/s13163-024-00485-6
Julkaistu sarjassa
Revista Matemática ComplutensePäivämäärä
2024Oppiaine
MatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköMathematicsAnalysis and Dynamics Research (Centre of Excellence)Tekijänoikeudet
© The Author(s) 2024
In this note, we prove that the boundary of a (W1,p, BV )-extension domain is of volume zero under the assumption that the domain is 1-fat at almost every x ∈ ∂. Especially, the boundary of any planar (W1,p, BV )-extension domain is of volume zero.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
1139-1138Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/207193759
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Open Access funding provided by University of Jyväskylä (JYU).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Two-Sided Boundary Points of Sobolev Extension Domains on Euclidean Spaces
García-Bravo, Miguel; Rajala, Tapio; Takanen, Jyrki (Springer, 2024)We prove an estimate on the Hausdorff dimension of the set of two-sided boundary points of general Sobolev extension domains on Euclidean spaces. We also present examples showing lower bounds on possible dimension estimates ... -
The volume of the boundary of a Sobolev (p,q)-extension domain
Koskela, Pekka; Ukhlov, Alexander; Zhu, Zheng (Elsevier, 2022)Let n≥2 and $1\leq q<p><\fz$. We prove that if Ω⊂Rn is a Sobolev (p,q)-extension domain, with additional capacitory restrictions on boundary in the case q≤n−1, n>2, then |∂Ω|=0. In the case 1≤q0.</p> -
Dimension estimates for the boundary of planar Sobolev extension domains
Lučić, Danka; Rajala, Tapio; Takanen, Jyrki (Walter de Gruyter GmbH, 2023)We prove an asymptotically sharp dimension upper-bound for the boundary of bounded simply-connected planar Sobolev W1,pW1,p -extension domains via the weak mean porosity of the boundary. The sharpness of our estimate is ... -
Sobolev homeomorphic extensions onto John domains
Koskela, Pekka; Koski, Aleksis; Onninen, Jani (Elsevier Inc., 2020)Given the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the ... -
Planar Sobolev extension domains
Zhang, Yi (University of Jyväskylä, 2017)This doctoral thesis deals with geometric characterizations of bounded planar simply connected Sobolev extension domains. It consists of three papers. In the first and third papers we give full geometric characterizations ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.