dc.contributor.author | Bárány, Balázs | |
dc.contributor.author | Käenmäki, Antti | |
dc.date.accessioned | 2017-08-07T06:44:51Z | |
dc.date.available | 2019-08-01T21:35:27Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Bárány, B., & Käenmäki, A. (2017). Ledrappier-Young formula and exact dimensionality of self-affine measures. <i>Advances in Mathematics</i>, <i>318</i>(1), 88-129. <a href="https://doi.org/10.1016/j.aim.2017.07.015" target="_blank">https://doi.org/10.1016/j.aim.2017.07.015</a> | |
dc.identifier.other | CONVID_27142678 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/54990 | |
dc.description.abstract | In this paper, we solve the long standing open problem on exact dimensionality of
self-affine measures on the plane. We show that every self-affine measure on the plane is exact
dimensional regardless of the choice of the defining iterated function system. In higher dimensions,
under certain assumptions, we prove that self-affine and quasi self-affine measures are exact
dimensional. In both cases, the measures satisfy the Ledrappier-Young formula. | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Advances in Mathematics | |
dc.subject.other | self-affine set | |
dc.subject.other | self-affine measure | |
dc.subject.other | hausdorff dimension | |
dc.subject.other | local dimension | |
dc.title | Ledrappier-Young formula and exact dimensionality of self-affine measures | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201708023396 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2017-08-02T12:15:11Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 88-129 | |
dc.relation.issn | 0001-8708 | |
dc.relation.numberinseries | 1 | |
dc.relation.volume | 318 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2017 Elsevier Inc. This is a final draft version of an article whose final and definitive form has been published by Elsevier. Published in this repository with the kind permission of the publisher. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.doi | 10.1016/j.aim.2017.07.015 | |
dc.type.okm | A1 | |