A note on Malliavin smoothness on the Lévy space
Laukkarinen, E. (2017). A note on Malliavin smoothness on the Lévy space. Electronic Communications in Probability, 22, Article 34. https://doi.org/10.1214/17-ECP65
Julkaistu sarjassa
Electronic Communications in ProbabilityTekijät
Päivämäärä
2017Tekijänoikeudet
© the Author, 2017. This is an open access article distributed under the terms of a Creative Commons License.
2017:94 | 2018:171 | 2019:74 | 2020:61 | 2021:50 | 2022:35 | 2023:64 | 2024:62
We consider Malliavin calculus based on the Itô chaos decomposition of square integrable
random variables on the Lévy space. We show that when a random variable
satisfies a certain measurability condition, its differentiability and fractional differentiability
can be determined by weighted Lebesgue spaces. The measurability condition
is satisfied for all random variables if the underlying Lévy process is a compound
Poisson process on a finite time interval.
Julkaisija
University of WashingtonISSN Hae Julkaisufoorumista
1083-589XJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/27101247
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Ellei muuten mainita, aineiston lisenssi on © the Author, 2017. This is an open access article distributed under the terms of a Creative Commons License.
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Malliavin smoothness on the Lévy space with Hölder continuous or BV functionals
Laukkarinen, Eija (2020)We consider Malliavin smoothness of random variables f(X1), where X is a purejump Lévy process and the functionfis either bounded and Hölder continuousor of bounded variation. We show that Malliavin differentiability and ... -
L2-variation of Lévy driven BSDEs with non-smooth terminal conditions
Geiss, Christel; Steinicke, Alexander (International Statistical Institute; Bernoulli Society for Mathematical Statistics and Probability, 2016)We consider the L2-regularity of solutions to backward stochastic differential equations (BSDEs) with Lipschitz generators driven by a Brownian motion and a Poisson random measure associated with a Lévy process (Xt)t∈[0,T]. ... -
About mean-variance hedging with basis risk
Lähdemäki, Sami (2021)Tässä tutkielmassa perehdytään odotusarvo-varianssi -suojausongelmaan (engl. mean-variance hedging problem) epätäydellisillä sijoitusmarkkinoilla. Päälähteenä seuraamme X. Xuen, J. Zhanging ja C. Wengin artikkelia Mean-variance ... -
Systematic implementation of higher order Whitney forms in methods based on discrete exterior calculus
Lohi, Jonni (Springer, 2022)We present a systematic way to implement higher order Whitney forms in numerical methods based on discrete exterior calculus. Given a simplicial mesh, we first refine the mesh into smaller simplices which can be used to ... -
Existence, uniqueness and Malliavin differentiability of Lévy-driven BSDEs with locally Lipschitz driver
Geiss, Christel; Steinicke, Alexander (Taylor & Francis, 2020)We investigate conditions for solvability and Malliavin differentiability of backward stochastic differential equations driven by a Lévy process. In particular, we are interested in generators which satisfy a local Lipschitz ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.