Hormone Replacement Therapy Associated White Blood Cell DNA Methylation and Gene Expression are Associated With Within-Pair Differences of Body Adiposity and Bone Mass
Bahl, A., Pöllänen, E., Ismail, K., Sipilä, S., Mikkola, T., Berglund, E., Lindqvist, C. M., Syvänen, A.-C., Rantanen, T., Kaprio, J., Kovanen, V., & Ollikainen, M. (2015). Hormone Replacement Therapy Associated White Blood Cell DNA Methylation and Gene Expression are Associated With Within-Pair Differences of Body Adiposity and Bone Mass. Twin Research and Human Genetics, 18(6), 647-661. https://doi.org/10.1017/thg.2015.82
Published in
Twin Research and Human GeneticsAuthors
Date
2015Discipline
Gerontologia ja kansanterveysGerontologian tutkimuskeskusHyvinvoinnin tutkimuksen yhteisöGerontology and Public HealthGerontology Research CenterSchool of WellbeingCopyright
© The Author(s) 2015. This is a final draft version of an article whose final and definitive form has been published by Cambridge University Press. Published in this repository with the kind permission of the publisher.
The loss of estrogen during menopause causes changes in the female body, with wide-ranging effects on health. Estrogen-containing hormone replacement therapy (HRT) leads to a relief of typical menopausal symptoms, benefits bone and muscle health, and is associated with tissue-specific gene expression profiles. As gene expression is controlled by epigenetic factors (including DNA methylation), many of which are environmentally sensitive, it is plausible that at least part of the HRT-associated gene expression is due to changes in DNA methylation profile. We investigated genome-wide DNA methylation and gene expression patterns of white blood cells (WBCs) and their associations with body composition, including muscle and bone measures of monozygotic (MZ) female twin pairs discordant for HRT. We identified 7,855 nominally significant differentially methylated regions (DMRs) associated with 4,044 genes. Of the genes with DMRs, five (ACBA1, CCL5, FASLG, PPP2R2B, and UHRF1) were also differentially expressed. All have been previously associated with HRT or estrogenic regulation, but not with HRT-associated DNA methylation. All five genes were associated with bone mineral content (BMC), and ABCA1, FASLG, and UHRF1 were also associated with body adiposity. Our study is the first to show that HRT associates with genome-wide DNA methylation alterations in WBCs. Moreover, we show that five differentially expressed genes with DMRs associate with clinical measures, including body fat percentage, lean body mass, bone mass, and blood lipids. Our results indicate that at least part of the known beneficial HRT effects on body composition and bone mass may be regulated by DNA methylation associated alterations in gene expression in circulating WBCs.
...
Publisher
Cambridge University Press; International Society for Twin StudiesISSN Search the Publication Forum
1832-4274Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/25415691
Metadata
Show full item recordCollections
- Liikuntatieteiden tiedekunta [3076]
Related items
Showing items with similar title or keywords.
-
Global gene expression profiles in skeletal muscle of monozygotic female twins discordant for hormone replacement therapy.
Ronkainen, Paula; Laakkonen, Eija; Alén, Markku; Pitkänen, Reino; Puolakka, Jukka; Kujala, Urho; Kaprio, Jaakko; Sipilä, Sarianna; Kovanen, Vuokko (Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland, 2010)Aging is accompanied by inexorable loss of muscle tissue. One of the underlying causes for this is the massive change in the hormonal milieu of the body. The role of a female sex steroid – estrogen – in these processes is ... -
From maternal glucocorticoid and thyroid hormones to epigenetic regulation of offspring gene expression : An experimental study in a wild bird species
Hukkanen, Mikaela; Hsu, Bin‐Yan; Cossin‐Sevrin, Nina; Crombecque, Mélanie; Delaunay, Axelle; Hollmen, Lotta; Kaukonen, Riina; Konki, Mikko; Lund, Riikka; Marciau, Coline; Stier, Antoine; Ruuskanen, Suvi (Wiley, 2023)Offspring phenotype at birth is determined by its genotype and the prenatal environment including exposure to maternal hormones. Variation in both maternal glucocorticoids and thyroid hormones can affect offspring phenotype, ... -
Leukocyte and Skeletal Muscle Telomere Length and Body Composition in Monozygotic Twin Pairs Discordant for Long-term Hormone Replacement Therapy
Sillanpää, Elina; Niskala, Paula; Laakkonen, Eija; Ponsot, Elodie; Alén, Markku; Kaprio, Jaakko; Kadi, Fawzi; Kovanen, Vuokko; Sipilä, Sarianna (Cambridge University Press; International Society for Twin Studies, 2017)Estrogen-based hormone replacement therapy (HRT) may be associated with deceleration of cellular aging. We investigated whether long-term HRT has effects on leukocyte (LTL) or mean and minimum skeletal muscle telomere ... -
Hormone replacement therapy enhances IGF-1 signaling in skeletal muscle by diminishing miR-182 and miR-233 expressions: A study on postmenopausal monozygotic twin pairs
Olivieri, Fabiola; Ahtiainen, Maarit; Lazzarini, Raffaella; Laakkonen, Eija; Capri, Miriam; Lorenzi, Maria; Fulgenzi, Gianluca; Albertini, Maria C.; Salvioli, Stefano; Alen, Markku J.; Kujala, Urho; Borghetti, Giulia; Babini, Lucia; Kaprio, Jaakko; Sipilä, Sarianna; Franceschi, Claudio; Kovanen, Vuokko; Procopio, Antonio D. (Wiley-Blackwell; Anatomical Society, 2014)MiRNAs are fine-tuning modifiers of skeletal muscle regulation, but knowledge of their hormonal control is lacking. We used a co-twin case–control study design, that is, monozygotic postmenopausal twin pairs discordant ... -
Postmenopausal Hormone Replacement Therapy Modifies Skeletal Muscle Composition and Function: A Study with Monozygotic Twin Pairs
Ronkainen, Paula; Kovanen, Vuokko; Alén, Markku; Laakkonen, Eija; Palonen, Eeva-Maija; Ankarberg-Lindgren, Carina; Hämäläinen, Esa; Turpeinen, Ursula; Kujala, Urho; Puolakka, Jukka; Kaprio, Jaakko; Sipilä, Sarianna (American Physiological Society, 2009)We investigated whether long-term hormone replacement therapy (HRT) is associated with mobility and lower limb muscle performance and composition in postmenopausal women. Fifteen 54- to 62-yr-old monozygotic female twin ...