Plants Assemble Species Specific Bacterial Communities From Common Core Taxa in Three Arcto-Alpine Climate Zones
Gopala Krishnan, M. K., Brader, G., Sessitsch, A., Mäki, A., Elsas, J. D. V., & Nissinen, R. (2017). Plants Assemble Species Specific Bacterial Communities From Common Core Taxa in Three Arcto-Alpine Climate Zones. Frontiers in Microbiology, 8, 12. https://doi.org/10.3389/fmicb.2017.00012
Published in
Frontiers in MicrobiologyAuthors
Date
2017Discipline
Ekologia ja evoluutiobiologiaAkvaattiset tieteetEcology and Evolutionary BiologyAquatic SciencesCopyright
© 2017 Kumar, Brader, Sessitsch, Mäki, Van_elsas and Nissinen. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
Evidence for the pivotal role of plant-associated bacteria to plant health and
productivity has accumulated rapidly in the last years. However, key questions related
to what drives plant bacteriomes remain unanswered, among which is the impact of
climate zones on plant-associated microbiota. This is particularly true for wild plants
in arcto-alpine biomes. Here, we hypothesized that the bacterial communities
associated with pioneer plants in these regions have major roles in plant health
support, and this is reflected in the formation of climate and host plant specific
endophytic communities. We thus compared the bacteriomes associated with the
native perennial plants Oxyria digyna and Saxifraga oppositifolia in three arcto-alpine
regions (alpine, low Arctic and high Arctic) with those in the corresponding bulk
soils. As expected, the bulk soil bacterial communities in the three regions were
significantly different. The relative abundances of Proteobacteria decreased
progressively from the alpine to the high-arctic soils, whereas those of Actinobacteria
increased. The candidate division AD3 and Acidobacteria abounded in the low Arctic
soils. Furthermore, plant species and geographic region were the major determinants
of the structures of the endophere communities. The plants in the alpine region had
higher relative abundances of Proteobacteria, while plants from the low- and high-
arctic regions were dominated by Firmicutes. A highly-conserved shared set of
ubiquitous bacterial taxa (core bacteriome) was found to occur in the two plant
species. Burkholderiales, Actinomycetales and Rhizobiales were the main taxa in this
core, and they were also the main contributors to the differences in the endosphere
bacterial community structures across compartments as well as regions. We postulate
that the composition of this core is driven by selection by the two plants.
...
Publisher
Frontiers Research FoundationISSN Search the Publication Forum
1664-302XKeywords
Original source
http://journal.frontiersin.org/article/10.3389/fmicb.2017.00012/fullPublication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/26482641
Metadata
Show full item recordCollections
License
Except where otherwise noted, this item's license is described as © 2017 Kumar, Brader, Sessitsch, Mäki, Van_elsas and Nissinen. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
Related items
Showing items with similar title or keywords.
-
Tissue-Specific Dynamics in the Endophytic Bacterial Communities in Arctic Pioneer Plant Oxyria digyna
Given, Cindy; Häikiö, Elina; Kumar, Manoj; Nissinen, Riitta (Frontiers Media, 2020)The rapid developments in the next-generation sequencing methods in the recent years have provided a wealth of information on the community structures and functions of endophytic bacteria. However, the assembly processes ... -
Assembly and functioning of endophytic bacterial communities in arcto-alpine pioneer plant Oxyria digyna
Given, Cindy Jittrapan (Jyväskylän yliopisto, 2019)Plant microbiomes consist of diverse communities of microorganisms, among which bacteria are highly abundant. The microbiomes are crucial for plants as they rely on their microbial associates for many essential functions. ... -
Strong Regionality and Dominance of Anaerobic Bacterial Taxa Characterize Diazotrophic Bacterial Communities of the Arcto-Alpine Plant Species Oxyria digyna and Saxifraga oppositifolia
Gopala Krishnan, Manoj Kumar; van Elsas, Jan Dirk; Nissinen, Riitta (Frontiers Research Foundation, 2017)Arctic and alpine biomes are most often strongly nitrogen-limited, and hence biological nitrogen fixation is a strong driver of these ecosystems. Both biomes are characterized by low temperatures and short growing seasons, ... -
Heritable Epichloë symbiosis shapes fungal but not bacterial communities of plant leaves
Nissinen, Riitta; Helander, Marjo; Gopala Krishnan, Manoj Kumar; Saikkonen, Kari (Nature Publishing Group, 2019)Keystone microbial species have driven eco-evolutionary processes since the origin of life. However, due to our inability to detect the majority of microbiota, members of diverse microbial communities of fungi, bacteria ... -
Local eukaryotic and bacterial stream community assembly is shaped by regional land use effects
Weigel, Benjamin; Graco-Roza, Caio; Hultman, Jenni; Pajunen, Virpi; Teittinen, Anette; Kuzmina, Maria; Zakharov, Evgeny V.; Soininen, Janne; Ovaskainen, Otso (Nature Publishing Group, 2023)With anticipated expansion of agricultural areas for food production and increasing intensity of pressures stemming from land-use, it is critical to better understand how species respond to land-use change. This is ...