Everywhere differentiability of viscosity solutions to a class of Aronsson's equations
Siljander, J., Wang, C., & Zhou, Y. (2017). Everywhere differentiability of viscosity solutions to a class of Aronsson's equations. Annales de l'Institut Henri Poincare (C). Analyse non Lineaire, 34(1), 119-138. https://doi.org/10.1016/j.anihpc.2015.10.003
Date
2017Copyright
© 2015 Elsevier Masson SAS. This is a final draft version of an article whose final and definitive form has been published by Elsevier. Published in this repository with the kind permission of the publisher.
We show the everywhere differentiability of viscosity solutions to a class of Aronsson
equations in R
n for n ≥ 2, where the coefficient matrices A are assumed to be
uniformly elliptic and C
1,1
. Our result extends an earlier important theorem by Evans
and Smart [19] who have studied the case A = In which correspond to the ∞-Laplace
equation. We also show that every point is a Lebesgue point for the gradient.
In the process of proving the results we improve some of the gradient estimates
obtained for the infinity harmonic functions. The lack of suitable gradient estimates
has been a major obstacle for solving the C
1,α problem in this setting, and we aim to
take a step towards better understanding of this problem, too.
A key tool in our approach is to study the problem in a suitable intrinsic geometry
induced by the coefficient matrix A. Heuristically, this corresponds to considering the
question on a Riemannian manifold whose the metric is given by the matrix A.
Publisher
Elsevier MassonISSN Search the Publication Forum
0294-1449Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/25279683
Metadata
Show full item recordCollections
Related items
Showing items with similar title or keywords.
-
Sharpness of the differentiability almost everywhere and capacitary estimates for Sobolev mappings
Hencl, Stanislav; Tengvall, Ville (European Mathematical Society Publishing House; Real Sociedad Matematica Espanola, 2017)We give sharp conformal conditions for the dfferentiability in the Sobolev space W1, n-1 loc (Ω,Rn). Furthermore, we show that the space W1, n-1 loc (Ω,Rn) can be considered as the borderline space for some capacitary ... -
Differential Effects of an Early Childhood Care Preventive Intervention Program on Behavior and Emotional Problems
Zarra-Nezhad, Maryam; Moazami-Goodarzi, Ali; Muotka, Joona; Hess, Markus; Havu-Nuutinen, Sari; Scheithauer, Herbert (Springer, 2024)Early childhood is a crucial time for developing social-emotional skills, offering the opportunity to lay the foundation for healthy development. However, early childhood behavior problems are risk factors for problems and ... -
Systematic derivation of partial differential equations for second order boundary value problems
Kettunen, Lauri; Rossi, Tuomo (John Wiley & Sons, 2023)Software systems designed to solve second order boundary value problems are typically restricted to hardwired lists of partial differential equations. In order to come up with more flexible systems, we introduce a systematic ... -
Inverse problems for the minimal surface equation and semilinear elliptic partial differential equations
Nurminen, Janne (Jyväskylän yliopisto, 2024)Tässä väitöskirjassa tutkitaan inversio-ongelmia epälineaarisille osittaisdifferentiaaliyhtälöille, joista erityisesti keskitytään inversio-ongelmiin minimipintayhtälölle ja semilineaarisille yhtälöille. Tässä työssä ... -
A variational inequality approach to the problem of the design of the optimal covering of an obstacle
Neittaanmäki, Pekka; Tiba, Dan; Mäkinen, Raino (Springer, 1989)