Sharpness of the differentiability almost everywhere and capacitary estimates for Sobolev mappings
Hencl, S. & Tengvall, V. (2017) Sharpness of the differentiability almost everywhere and capacitary estimates for Sobolev mappings. Revista Matemática Iberoamericana, 33 (2), 595-622.
doi:10.4171/RMI/951
Julkaistu sarjassa
Revista Matemática IberoamericanaPäivämäärä
2017Tekijänoikeudet
© European Mathematical Society, 2017.
We give sharp conformal conditions for the dfferentiability in the
Sobolev space W1, n-1 loc (Ω,Rn). Furthermore, we show that the space W1, n-1 loc (Ω,Rn)
can be considered as the borderline space for some capacitary inequalities.
Julkaisija
European Mathematical Society Publishing House; Real Sociedad Matematica EspanolaISSN Hae Julkaisufoorumista
0213-2230Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Generalized dimension distortion under Sobolev mappings
Zapadinskaya, Aleksandra (University of Jyväskylä, 2011) -
Mappings of L p -integrable distortion: regularity of the inverse
Onninen, Jani; Tengvall, Ville (The RSE Scotland Foundation, 2016)Let X be an open set in R n and suppose that f : X → R n is a Sobolev homeomorphism. We study the regularity of f −1 under the L p -integrability assumption on the distortion function Kf . First, if X is the unit ... -
Everywhere differentiability of viscosity solutions to a class of Aronsson's equations
Siljander, Juhana; Wang, Changyou; Zhou, Yuan (Elsevier Masson, 2017)We show the everywhere differentiability of viscosity solutions to a class of Aronsson equations in R n for n ≥ 2, where the coefficient matrices A are assumed to be uniformly elliptic and C 1,1 . Our result extends ... -
Curvewise characterizations of minimal upper gradients and the construction of a Sobolev differential
Eriksson-Bique, Sylvester; Soultanis, Elefterios (Mathematical Sciences Publishers, 2024)We represent minimal upper gradients of Newtonian functions, in the range 1≤p<∞, by maximal directional derivatives along “generic” curves passing through a given point, using plan-modulus duality and disintegration ... -
Differential structure associated to axiomatic Sobolev spaces
Giglia, Nicola; Pasqualetto, Enrico (Elsevier GmbH, Urban und Fischer, 2020)The aim of this note is to explain in which sense an axiomatic Sobolev space over a general metric measure space (à la Gol’dshtein–Troyanov) induces – under suitable locality assumptions – a first-order differential structure.
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.