University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Väitöskirjat
  • View Item
JYX > Opinnäytteet > Väitöskirjat > View Item

Studies of two-dimensional and three-dimensional phononic crystal structures

Thumbnail
View/Open
34. Mb

Downloads:  
Show download detailsHide download details  
Published in
Research report / Department of Physics, University of Jyväskylä
Authors
Tian, Yolan
Date
2016
Discipline
Fysiikka

 
This thesis focuses on studying phononic crystal structures. More specifically, it is aimed at fabrication and measurement of thermal properties of two-dimensional (2D) periodic microstructures and three-dimensional (3D) nanostructures. There is great interest in understanding, manipulating and considering application perspective of minimizing of thermal transport in periodic structures. Periodic structures have been studied more on their optical properties, but this thesis places emphasis on their application of manipulating heat. A process of fabricating two-dimensional hole array phononic (2D PnC) structures is described here. It consists of membrane preparation, superconductor-insulatornormal metal-insulator-superconductor (SINIS) tunnel junction fabrication and etching of 2D PnC structures. Simple square array geometries of periods 4, 8, 16 m were fabricated, keeping filling factor of holes as 0.7. Thermal conductance of phononic structures with the three different periods were measured and compared with uncut membranes at temperatures from 50 mK to 1.2 K. All PnC structures gave a lower thermal conductance than membrane. In addition, thermal conductance was measured on membranes by different types of SINIS junction pairs. The variables were the geometry, the normal metal material and the normal metal length, which all affected the measured result. It is thus important to keep the SINIS heaters and thermometers the same when studying thermal conductance and its dependence on the period of the PnC structure. Additionally, sometimes superconductor-normal metalsuperconductor (SNS) junction pairs were accidentally made. Thermal conductance measured using a SNS structure as a heater and SINIS structure as a thermometer is also shown. We also address the fabrication of 3D colloidal polystyrene(PS) nano-sphere PnC structures on plain chips and the statistics of the deposition process, selfassembly by vertical dipping. Combinations of dipping angle of 45 and 90 , withdrawal speed of 0.01 mm/min to 0.05 mm/min and nano-sphere colloidal solution concentration of 0.02%, 0.2%, 2%, 5% and 10% were studied. Colloidal 3D PnC structure of face-centered cubic (fcc) crystal domains were self-assembled. Silicon chips with etched microscale boxes were fabricated and dipped vertically into 10% concentration PS colloidal solution at withdrawal at speed of 0.01 mm/min to 0.04 mm/min. Lower speed, higher concentration and 90 vertical dipping produce larger 3D PnC domain sizes on average. It was found that one big domain could fill a 20 m deep confined box no larger than 200 m length. However, there were always cracks between the domains and the edges of the box. Therefore, a polymer box was developed and used instead as a confinement box. It was fabricated by three dimensional lithography (3DL), using two types of resist: IPL 780 and IPDIP. Glass substrates with 10 m high IPL780 resist polymer boxes of hollow area of 100 m 100 m were dipped into a solution of 0.5%, 1% and 2% concentration of 260 nm diameter polystyrene nano-spheres at withdrawal speed of 0.01 and 0.02 mm/min. Only the sample with 1% concentration at withdrawal speed of 0.01 mm/min gave good results. There were no PS nano-sphere self-assembled on top of IPL780 box. However, there were several domains inside one box. So, a 20 m high polymer box of 50 m 50 m area was fabricated on silicon chips. They were dipped into a PS nano-sphere solution of 1%, 2 % and 5 % concentration at the speed of 0.01 mm/min. Finally, a method was also developed to protect PS colloidal PnC structures from deformation and dissolution. As expected, there was only one domain inside the box formed from the concentration of 1%. Unexpected, there were PS nano-spheres also on top of the sides of IPDIP boxes. PnC structures were treated by e-beam irradiation and protected by a capping layer of AlOx. Aluminum wires were successfully deposited on top of the PnC structures, which is promising for mounting thermal conductance measurement devices on top. ...
Publisher
University of Jyväskylä
ISBN
978-951-39-6702-4
ISSN Search the Publication Forum
0075-465X
Keywords
optinen litografia itsejärjestyminen itsejärjestyvyys phononic crystal 3D lithography self-assembly thermal conductance phonic crystal self assembly kiteet fononit mikrorakenteet nanorakenteet kolloidit lämmön johtuminen
URI

http://urn.fi/URN:ISBN:978-951-39-6702-4

Metadata
Show full item record
Collections
  • Väitöskirjat [3178]

Related items

Showing items with similar title or keywords.

  • Minimizing Coherent Thermal Conductance by Controlling the Periodicity of Two-Dimensional Phononic Crystals 

    Tian, Yaolan; Puurtinen, Tuomas A.; Geng, Zhuoran; Maasilta, Ilari J. (American Physical Society, 2019)
    Periodic hole-array phononic crystals (PnCs) can strongly modify phonon dispersion relations and have been shown to influence thermal conductance coherently, especially at low temperatures where bulk scattering is suppressed. ...
  • Controlling thermal conductance using three-dimensional phononic crystals 

    Heiskanen, Samuli; Puurtinen, Tuomas A.; Maasilta, Ilari J. (AIP Publishing, 2021)
    Controlling thermal transport at the nanoscale is vital for many applications. Previously, it has been shown that this control can be achieved with periodically nanostructured two-dimensional phononic crystals for the case ...
  • Computational and theoretical studies on lattice thermal conductivity and thermal properties of silicon clathrates 

    Härkönen, Ville (University of Jyväskylä, 2016)
    The lattice thermal conductivity is usually an intrinsic property in the study of thermoelectricity. In particular, relatively low lattice thermal conductivity is usually a desired feature when higher thermoelectric efficiency ...
  • Thermal conductance of pillar-based phononic crystals at sub-Kelvin temperatures 

    Korkiamäki, Tatu (2020)
    Fononikide on keinotekoinen periodinen rakenne yhdessä, kahdessa tai kolmessa ulottuvuudessa, joka vaikuttaa fononien eli elastisten aaltojen kvanttien etenemiseen. Koska lämmön johtuminen eristeissä ja puolijohteissa ...
  • Applications of DNA self-assembled structures in nanoelectronics and plasmonics 

    Shen, Boxuan (University of Jyväskylä, 2018)
    In this thesis, the potential applications of DNA self-assembled structures were explored in both nanoelectronics and plasmonics. The works can be divided into two parts: electrical characterization of unmodified multilayered ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre