dc.contributor.author | Luukko, Perttu | |
dc.contributor.author | Helske, Jouni | |
dc.contributor.author | Räsänen, Esa | |
dc.date.accessioned | 2016-04-27T10:54:18Z | |
dc.date.available | 2016-07-12T21:45:06Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | Luukko, P., Helske, J., & Räsänen, E. (2016). Introducing libeemd: a program package for performing the ensemble empirical mode decomposition. <i>Computational Statistics</i>, <i>31</i>(2), 545-557. <a href="https://doi.org/10.1007/s00180-015-0603-9" target="_blank">https://doi.org/10.1007/s00180-015-0603-9</a> | |
dc.identifier.other | CONVID_25270246 | |
dc.identifier.other | TUTKAID_67651 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/49577 | |
dc.description.abstract | t The ensemble empirical mode decomposition (EEMD) and its complete
variant (CEEMDAN) are adaptive, noise-assisted data analysis methods
that improve on the ordinary empirical mode decomposition (EMD). All these
methods decompose possibly nonlinear and/or nonstationary time series data
into a finite amount of components separated by instantaneous frequencies.
This decomposition provides a powerful method to look into the different processes
behind a given time series data, and provides a way to separate short
time-scale events from a general trend.
We present a free software implementation of EMD, EEMD and CEEMDAN
and give an overview of the EMD methodology and the algorithms used in
the decomposition. We release our implementation, libeemd, with the aim of
providing a user-friendly, fast, stable, well-documented and easily extensible
EEMD library for anyone interested in using (E)EMD in the analysis of time
series data. While written in C for numerical efficiency, our implementation
includes interfaces to the Python and R languages, and interfaces to other
languages are straightforward. | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Computational Statistics | |
dc.subject.other | Hilbert–Huang transform | |
dc.subject.other | intrinsic mode function | |
dc.subject.other | time series analysis | |
dc.subject.other | adaptive data analysis | |
dc.subject.other | noise-assisted data analysis | |
dc.subject.other | detrending | |
dc.title | Introducing libeemd: a program package for performing the ensemble empirical mode decomposition | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-201604272338 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Fysiikka | fi |
dc.contributor.oppiaine | Tilastotiede | fi |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Physics | en |
dc.contributor.oppiaine | Statistics | en |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2016-04-27T09:15:14Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 545-557 | |
dc.relation.issn | 0943-4062 | |
dc.relation.numberinseries | 2 | |
dc.relation.volume | 31 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © Springer-Verlag Berlin Heidelberg 2015. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher. | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.doi | 10.1007/s00180-015-0603-9 | |
dc.type.okm | A1 | |