Introducing libeemd: a program package for performing the ensemble empirical mode decomposition
Luukko, P., Helske, J., & Räsänen, E. (2016). Introducing libeemd: a program package for performing the ensemble empirical mode decomposition. Computational Statistics, 31(2), 545-557. https://doi.org/10.1007/s00180-015-0603-9
Julkaistu sarjassa
Computational StatisticsPäivämäärä
2016Tekijänoikeudet
© Springer-Verlag Berlin Heidelberg 2015. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher.
t The ensemble empirical mode decomposition (EEMD) and its complete
variant (CEEMDAN) are adaptive, noise-assisted data analysis methods
that improve on the ordinary empirical mode decomposition (EMD). All these
methods decompose possibly nonlinear and/or nonstationary time series data
into a finite amount of components separated by instantaneous frequencies.
This decomposition provides a powerful method to look into the different processes
behind a given time series data, and provides a way to separate short
time-scale events from a general trend.
We present a free software implementation of EMD, EEMD and CEEMDAN
and give an overview of the EMD methodology and the algorithms used in
the decomposition. We release our implementation, libeemd, with the aim of
providing a user-friendly, fast, stable, well-documented and easily extensible
EEMD library for anyone interested in using (E)EMD in the analysis of time
series data. While written in C for numerical efficiency, our implementation
includes interfaces to the Python and R languages, and interfaces to other
languages are straightforward.
...
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0943-4062Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/25270246
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Hilbert-Huang versus morlet wavelet transformation on mismatch negativity of children in uninterrupted sound paradigm
Cong, Fengyu; Sipola, Tuomo; Huttunen-Scott, Tiina; Xu, Xiaonan; Ristaniemi, Tapani; Lyytinen, Heikki (BioMed Central (BMC), 2009)Background. Compared to the waveform or spectrum analysis of event-related potentials (ERPs), time-frequency representation (TFR) has the advantage of revealing the ERPs time and frequency ... -
Estimating Programming Exercise Difficulty using Performance Factors Analysis
Tirronen, Ville; Tirronen, Maria (IEEE, 2020)This Work in Progress Paper studies student and exercise modelling based on pass/fail log data gathered from an introductory programming course. Contemporary education capitalizes on the communications technology and remote ... -
An age-adapted plyometric exercise program improves dynamic strength, jump performance and functional capacity in older men either similarly or more than traditional resistance training
Van Roie, Evelien; Walker, Simon; Van Driessche, Stijn; Delabastita, Tijs; Vanwanseele, Benedicte; Delecluse, Christophe (Public Library of Science (PLoS), 2020)Power declines at a greater rate during ageing and is more relevant for functional deterioration than either loss of maximum strength or muscle mass. Human movement typically consists of stretch-shortening cycle action. ... -
Applying Hilbert-Huang transform to mismatch negativity
Sipola, Tuomo (2009)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.