Näytä suppeat kuvailutiedot

dc.contributor.authorLuukko, Perttu
dc.contributor.authorHelske, Jouni
dc.contributor.authorRäsänen, Esa
dc.date.accessioned2016-04-27T10:54:18Z
dc.date.available2016-07-12T21:45:06Z
dc.date.issued2016
dc.identifier.citationLuukko, P., Helske, J., & Räsänen, E. (2016). Introducing libeemd: a program package for performing the ensemble empirical mode decomposition. <i>Computational Statistics</i>, <i>31</i>(2), 545-557. <a href="https://doi.org/10.1007/s00180-015-0603-9" target="_blank">https://doi.org/10.1007/s00180-015-0603-9</a>
dc.identifier.otherCONVID_25270246
dc.identifier.otherTUTKAID_67651
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/49577
dc.description.abstractt The ensemble empirical mode decomposition (EEMD) and its complete variant (CEEMDAN) are adaptive, noise-assisted data analysis methods that improve on the ordinary empirical mode decomposition (EMD). All these methods decompose possibly nonlinear and/or nonstationary time series data into a finite amount of components separated by instantaneous frequencies. This decomposition provides a powerful method to look into the different processes behind a given time series data, and provides a way to separate short time-scale events from a general trend. We present a free software implementation of EMD, EEMD and CEEMDAN and give an overview of the EMD methodology and the algorithms used in the decomposition. We release our implementation, libeemd, with the aim of providing a user-friendly, fast, stable, well-documented and easily extensible EEMD library for anyone interested in using (E)EMD in the analysis of time series data. While written in C for numerical efficiency, our implementation includes interfaces to the Python and R languages, and interfaces to other languages are straightforward.
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesComputational Statistics
dc.subject.otherHilbert–Huang transform
dc.subject.otherintrinsic mode function
dc.subject.othertime series analysis
dc.subject.otheradaptive data analysis
dc.subject.othernoise-assisted data analysis
dc.subject.otherdetrending
dc.titleIntroducing libeemd: a program package for performing the ensemble empirical mode decomposition
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201604272338
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineFysiikkafi
dc.contributor.oppiaineTilastotiedefi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiainePhysicsen
dc.contributor.oppiaineStatisticsen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2016-04-27T09:15:14Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange545-557
dc.relation.issn0943-4062
dc.relation.numberinseries2
dc.relation.volume31
dc.type.versionacceptedVersion
dc.rights.copyright© Springer-Verlag Berlin Heidelberg 2015. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.relation.doi10.1007/s00180-015-0603-9
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot