dc.contributor.author | Kenig, Carlos | |
dc.contributor.author | Salo, Mikko | |
dc.date.accessioned | 2016-01-27T10:23:38Z | |
dc.date.available | 2016-01-27T10:23:38Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Kenig, C., & Salo, M. (2013). The Calderón problem with partial data on manifolds and applications. <i>Analysis & PDE</i>, <i>6</i>(8), 2003-2048. <a href="https://doi.org/10.2140/apde.2013.6.2003" target="_blank">https://doi.org/10.2140/apde.2013.6.2003</a> | |
dc.identifier.other | CONVID_23709277 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/48487 | |
dc.description.abstract | We consider Calderón’s inverse problem with partial data in dimensions n ≥ 3. If the inaccessible part
of the boundary satisfies a (conformal) flatness condition in one direction, we show that this problem
reduces to the invertibility of a broken geodesic ray transform. In Euclidean space, sets satisfying the
flatness condition include parts of cylindrical sets, conical sets, and surfaces of revolution. We prove local
uniqueness in the Calderón problem with partial data in admissible geometries, and global uniqueness
under an additional concavity assumption. This work unifies two earlier approaches to this problem—
one by Kenig, Sjöstrand, and Uhlmann, the other by Isakov— and extends both. The proofs are based
on improved Carleman estimates with boundary terms, complex geometrical optics solutions involving
reflected Gaussian beam quasimodes, and invertibility of (broken) geodesic ray transforms. This last topic
raises questions of independent interest in integral geometry. | |
dc.language.iso | eng | |
dc.publisher | Mathematical Sciences Publishers | |
dc.relation.ispartofseries | Analysis & PDE | |
dc.subject.other | calderón problem | |
dc.subject.other | partial data | |
dc.subject.other | inverse problem | |
dc.title | The Calderón problem with partial data on manifolds and applications | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201601201209 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2016-01-20T16:15:21Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 2003-2048 | |
dc.relation.issn | 2157-5045 | |
dc.relation.numberinseries | 8 | |
dc.relation.volume | 6 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © Mathematical Sciences Publishers 2013. Published in this repository with the kind permission of the publisher. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.doi | 10.2140/apde.2013.6.2003 | |
dc.type.okm | A1 | |