Applications of Microlocal Analysis in Inverse Problems
Salo, M. (2020). Applications of Microlocal Analysis in Inverse Problems. Mathematics, 8(7), Article 1184. https://doi.org/10.3390/math8071184
Julkaistu sarjassa
MathematicsTekijät
Päivämäärä
2020Oppiaine
MatematiikkaInversio-ongelmien huippuyksikköMathematicsCentre of Excellence in Inverse ProblemsTekijänoikeudet
© 2020 by the author. Licensee MDPI, Basel, Switzerland.
This note reviews certain classical applications of microlocal analysis in inverse problems. The text is based on lecture notes for a postgraduate level minicourse on applications of microlocal analysis in inverse problems, given in Helsinki and Shanghai in June 2019.
Julkaisija
MDPI AGISSN Hae Julkaisufoorumista
2227-7390Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/41624965
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Euroopan komissio; Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SA; Huippuyksikkörahoitus, SA
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
The author was supported by the Academy of Finland (Finnish Centre of Excellence in Inverse Modelling and Imaging, grant numbers 312121 and 309963) and by the European Research Council under Horizon 2020 (ERC CoG 770924).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Recovery of time dependent coefficients from boundary data for hyperbolic equations
Feizmohammadi, Ali; Ilmavirta, Joonas; Kian, Yavar; Oksanen, Lauri (European Mathematical Society - EMS - Publishing House GmbH, 2021)We study uniqueness of the recovery of a time-dependent magnetic vector valued potential and an electric scalar-valued potential on a Riemannian manifold from the knowledge of the Dirichlet-to-Neumann map of a hyperbolic ... -
Inverse problems for p-Laplace type equations under monotonicity assumptions
Guo, Changyu; Kar, Manas; Salo, Mikko (EUT Edizioni Universita di Trieste, 2016)We consider inverse problems for p-Laplace type equations under monotonicity assumptions. In two dimensions, we show that any two conductivities satisfying σ1 ≥ σ2 and having the same nonlinear Dirichlet-to-Neumann map ... -
The Linearized Calderón Problem on Complex Manifolds
Guillarmou, Colin; Salo, Mikko; Tzou, Leo (Springer, 2019)In this note we show that on any compact subdomain of a K¨ahler manifold that admits sufficiently many global holomorphic functions, the products of harmonic functions form a complete set. This gives a positive answer to ... -
On some partial data Calderón type problems with mixed boundary conditions
Covi, Giovanni; Rüland, Angkana (Elsevier, 2021)In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal ... -
Inverse problems for elliptic equations with power type nonlinearities
Lassas, Matti; Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko (Elsevier, 2021)We introduce a method for solving Calderón type inverse problems for semilinear equations with power type nonlinearities. The method is based on higher order linearizations, and it allows one to solve inverse problems for ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.