Gromov hyperbolicity and quasihyperbolic geodesics
Koskela, P., Lammi, P., & Manojlovic, V. (2014). Gromov hyperbolicity and quasihyperbolic geodesics. Annales scientifiques de l'École normale supérieure, 47 (5), 975-990. Retrieved from http://smf4.emath.fr/Publications/AnnalesENS/4_47/html/ens_ann-sc_47_975-990.php
Julkaistu sarjassa
Annales scientifiques de l'École normale supérieurePäivämäärä
2014Tekijänoikeudet
© Societe Mathematique de France. This is a final draft version of an article whose final and definitive form has been published by Societe Mathematique de France; École normale supérieure.
We characterize Gromov hyperbolicity of the quasihyperbolic metric space (\Omega,k) by geometric properties of the Ahlfors regular length metric measure space (\Omega,d,\mu). The characterizing properties are called the Gehring--Hayman condition and the ball--separation condition.
Julkaisija
Societe Mathematique de France; École normale supérieureISSN Hae Julkaisufoorumista
0012-9593
Alkuperäislähde
http://www.math.ens.fr/edition/annales/index.htmlMetadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Quasihyperbolic boundary condition: Compactness of the inner boundary
Lammi, Päivi (University of Illinois, 2011)We prove that if a metric space satisfies a suitable growth condition in the quasihyperbolic metric and the Gehring–Hayman theorem in the original metric, then the inner boundary of the space is homeomorphic to the Gromov ... -
On one-dimensionality of metric measure spaces
Schultz, Timo (American Mathematical Society (AMS), 2021)In this paper, we prove that a metric measure space which has at least one open set isometric to an interval, and for which the (possibly non-unique) optimal transport map exists from any absolutely continuous measure to ... -
Non-branching geodesics and optimal maps in strong CD(K,∞) -spaces
Rajala, Tapio; Sturm, Karl-Theodor (Springer, 2014)We prove that in metric measure spaces where the entropy functional is Kconvex along every Wasserstein geodesic any optimal transport between two absolutely continuous measures with finite second moments lives on a ... -
Existence of optimal transport maps in very strict CD(K,∞) -spaces
Schultz, Timo (Springer Berlin Heidelberg, 2018)We introduce a more restrictive version of the strict CD(K,∞) -condition, the so-called very strict CD(K,∞) -condition, and show the existence of optimal maps in very strict CD(K,∞) -spaces despite the possible ... -
Failure of Topological Rigidity Results for the Measure Contraction Property
Ketterer, Christian; Rajala, Tapio (Springer Netherlands, 2015)We give two examples of metric measure spaces satisfying the measure contraction property MCP(K, N) but having different topological dimensions at different regions of the space. The first one satisfies MCP(0, 3) and ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.