Gromov hyperbolicity and quasihyperbolic geodesics
Koskela, P., Lammi, P., & Manojlovic, V. (2014). Gromov hyperbolicity and quasihyperbolic geodesics. Annales scientifiques de l'École normale supérieure, 47 (5), 975-990. Retrieved from http://smf4.emath.fr/Publications/AnnalesENS/4_47/html/ens_ann-sc_47_975-990.php
Julkaistu sarjassa
Annales scientifiques de l'École normale supérieurePäivämäärä
2014Tekijänoikeudet
© Societe Mathematique de France. This is a final draft version of an article whose final and definitive form has been published by Societe Mathematique de France; École normale supérieure.
We characterize Gromov hyperbolicity of the quasihyperbolic metric space (\Omega,k) by geometric properties of the Ahlfors regular length metric measure space (\Omega,d,\mu). The characterizing properties are called the Gehring--Hayman condition and the ball--separation condition.
Julkaisija
Societe Mathematique de France; École normale supérieureISSN Hae Julkaisufoorumista
0012-9593
Alkuperäislähde
http://www.math.ens.fr/edition/annales/index.htmlMetadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Quasihyperbolic boundary condition: Compactness of the inner boundary
Lammi, Päivi (University of Illinois, 2011)We prove that if a metric space satisfies a suitable growth condition in the quasihyperbolic metric and the Gehring–Hayman theorem in the original metric, then the inner boundary of the space is homeomorphic to the Gromov ... -
Non-branching geodesics and optimal maps in strong CD(K,∞) -spaces
Rajala, Tapio; Sturm, Karl-Theodor (Springer, 2014)We prove that in metric measure spaces where the entropy functional is Kconvex along every Wasserstein geodesic any optimal transport between two absolutely continuous measures with finite second moments lives on a ... -
Gromov-hyperboliset ryhmät
Martimo, Meeri (2016)Meeri Martimo, Gromov-hyperboliset ryhmät (engl. Gromov-hyperbolic groups), matematiikan pro gradu -tutkielma, 51 s., Jyväskylän yliopisto, Matematiikan ja tilastotieteen laitos, syksy 2016. Tässä tutkielmassa käsitellään ... -
A density problem for Sobolev spaces on Gromov hyperbolic domains
Koskela, Pekka; Rajala, Tapio; Zhang, Yi (Elsevier Ltd, 2017)We prove that for a bounded domain Ω ⊂ Rn which is Gromov hyperbolic with respect to the quasihyperbolic metric, especially when Ω is a finitely connected planar domain, the Sobolev space W1, ∞(Ω) is dense in W1, p(Ω) ... -
Homeomorphic equivalence of Gromov and internal boundaries
Lammi, Päivi (2011)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.