University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Artikkelit
  • Matemaattis-luonnontieteellinen tiedekunta
  • View Item
JYX > Artikkelit > Matemaattis-luonnontieteellinen tiedekunta > View Item

Gromov hyperbolicity and quasihyperbolic geodesics

ThumbnailFinal draft
View/Open
254.5 Kb

Downloads:  
Show download detailsHide download details  
Koskela, P., Lammi, P., & Manojlovic, V. (2014). Gromov hyperbolicity and quasihyperbolic geodesics. Annales scientifiques de l'École normale supérieure, 47 (5), 975-990. Retrieved from http://smf4.emath.fr/Publications/AnnalesENS/4_47/html/ens_ann-sc_47_975-990.php
Published in
Annales scientifiques de l'École normale supérieure
Authors
Koskela, Pekka |
Lammi, Päivi |
Manojlovic, Vesna
Date
2014
Copyright
© Societe Mathematique de France. This is a final draft version of an article whose final and definitive form has been published by Societe Mathematique de France; École normale supérieure.

 
We characterize Gromov hyperbolicity of the quasihyperbolic metric space (\Omega,k) by geometric properties of the Ahlfors regular length metric measure space (\Omega,d,\mu). The characterizing properties are called the Gehring--Hayman condition and the ball--separation condition.
Publisher
Societe Mathematique de France; École normale supérieure
ISSN Search the Publication Forum
0012-9593
Keywords
Gehring-Hayman inequality Gromov hyperbolicity quasihyperbolic metric

Original source
http://www.math.ens.fr/edition/annales/index.html

URI

http://urn.fi/URN:NBN:fi:jyu-201505061734

Metadata
Show full item record
Collections
  • Matemaattis-luonnontieteellinen tiedekunta [4954]

Related items

Showing items with similar title or keywords.

  • Quasihyperbolic boundary condition: Compactness of the inner boundary 

    Lammi, Päivi (University of Illinois, 2011)
    We prove that if a metric space satisfies a suitable growth condition in the quasihyperbolic metric and the Gehring–Hayman theorem in the original metric, then the inner boundary of the space is homeomorphic to the Gromov ...
  • Failure of Topological Rigidity Results for the Measure Contraction Property 

    Ketterer, Christian; Rajala, Tapio (Springer Netherlands, 2015)
    We give two examples of metric measure spaces satisfying the measure contraction property MCP(K, N) but having different topological dimensions at different regions of the space. The first one satisfies MCP(0, 3) and ...
  • Non-branching geodesics and optimal maps in strong CD(K,∞) -spaces 

    Rajala, Tapio; Sturm, Karl-Theodor (Springer, 2014)
    We prove that in metric measure spaces where the entropy functional is Kconvex along every Wasserstein geodesic any optimal transport between two absolutely continuous measures with finite second moments lives on a ...
  • Slopes of Kantorovich potentials and existence of optimal transport maps in metric measure spaces 

    Ambrosio, Luigi; Rajala, Tapio (Springer, 2014)
    We study optimal transportation with the quadratic cost function in geodesic metric spaces satisfying suitable non-branching assumptions. We introduce and study the notions of slope along curves and along geodesics and we ...
  • Existence of optimal transport maps in very strict CD(K,∞) -spaces 

    Schultz, Timo (Springer Berlin Heidelberg, 2018)
    We introduce a more restrictive version of the strict CD(K,∞) -condition, the so-called very strict CD(K,∞) -condition, and show the existence of optimal maps in very strict CD(K,∞) -spaces despite the possible ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre