Show simple item record

dc.contributor.authorMiettinen, Arttu
dc.contributor.authorChinga-Carrasco, Gary
dc.contributor.authorKataja, Markku
dc.date.accessioned2014-09-10T13:43:24Z
dc.date.available2014-09-10T13:43:24Z
dc.date.issued2014
dc.identifier.citationMiettinen, A., Chinga-Carrasco, G., & Kataja, M. (2014). Three-Dimensional Microstructural Properties of Nanofibrillated Cellulose Films. <i>International Journal of Molecular Sciences</i>, <i>15</i>(4), 6423-6440. <a href="https://doi.org/10.3390/ijms15046423" target="_blank">https://doi.org/10.3390/ijms15046423</a>
dc.identifier.otherCONVID_23826633
dc.identifier.otherTUTKAID_62730
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/44235
dc.description.abstractAbstract: Nanofibrillated cellulose (NFC) films have potential as oxygen barriers for, e.g., food packaging applications, but their use is limited by their hygroscopic characteristics. The three-dimensional microstructure of NFC films made of Pinus radiata (Radiata Pine) kraft pulp fibres has been assessed in this study, considering the structural development as a function of relative humidity (RH). The surface roughness, micro-porosity, thickness and their correlations were analyzed using X-ray microtomography (X–μCT) and computerized image analysis. The results are compared to those from scanning electron microscopy and laser profilometry. Based on a series of films having varying amounts of 2 , 2 , 6 , 6 -tetramethylpiperidinyl- 1 -oxyl (TEMPO)-mediated oxidated nanofibrils, it was demonstrated that X–μCT is suitable for assessing the surface and bulk 3D microstructure of the cellulose films. Additionally, one of the series was assessed at varying humidity levels, using the non-destructive capabilities of X–μCT and a newly developed humidity chamber for in-situ characterization. The oxygen transmission rate (OTR) of the films ( 20g = m 2 ) was below 3 : 7mLm 2 day 1 at humidity levels below 60% RH. However, the OTR increased considerably to 12 : 4mLm 2 day 1 when the humidity level increased to 80% RH. The increase in OTR was attributed to a change of the film porosity, which was reflected as an increase in local thickness. Hence, the characterization techniques applied in this study shed more light on the structures of NFC films and how they are affected by varying humidity levels. It was demonstrated that in increasing relative humidity the films swelled and the oxygen barrier properties decreased.fi
dc.language.isoeng
dc.publisherM D P I AG
dc.relation.ispartofseriesInternational Journal of Molecular Sciences
dc.subject.othernanofibrillated cellulose
dc.subject.otherNFC
dc.subject.otheroxygen transmission rate
dc.subject.otherOTR
dc.subject.otherhumidity
dc.titleThree-Dimensional Microstructural Properties of Nanofibrillated Cellulose Films
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201409092753
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineFysiikkafi
dc.contributor.oppiainePhysicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2014-09-09T03:30:04Z
dc.type.coarjournal article
dc.description.reviewstatuspeerReviewed
dc.format.pagerange6423-6440
dc.relation.issn1422-0067
dc.relation.numberinseries4
dc.relation.volume15
dc.type.versionpublishedVersion
dc.rights.copyright© 1996-2014 MDPI AG (Basel, Switzerland). This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
dc.rights.accesslevelopenAccessfi
dc.subject.ysotomografia
jyx.subject.urihttp://www.yso.fi/onto/yso/p17798
dc.rights.urlhttp://creativecommons.org/licenses/by/3.0/
dc.relation.doi10.3390/ijms15046423


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 1996-2014 MDPI AG (Basel, Switzerland). This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Except where otherwise noted, this item's license is described as © 1996-2014 MDPI AG (Basel, Switzerland). This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.