Cellulose nanofibrils prepared by gentle drying methods reveal the limits of helium ion microscopy imaging
Ketola, A. E., Leppänen, M., Turpeinen, T., Papponen, P., Strand, A., Sundberg, A., Arstila, K., & Retulainen, E. (2019). Cellulose nanofibrils prepared by gentle drying methods reveal the limits of helium ion microscopy imaging. RSC Advances, 9(27), 15668-15677. https://doi.org/10.1039/C9RA01447K
Julkaistu sarjassa
RSC AdvancesTekijät
Päivämäärä
2019Oppiaine
Solu- ja molekyylibiologiaFysiikkaNanoscience CenterKiihdytinlaboratorioCell and Molecular BiologyPhysicsNanoscience CenterAccelerator LaboratoryTekijänoikeudet
© The Royal Society of Chemistry 2019.
TEMPO-oxidized cellulose nanofibrils (TCNFs) have unique properties, which can be utilised in many application fields from printed electronics to packaging. Visual characterisation of TCNFs has been commonly performed using Scanning Electron Microscopy (SEM). However, a novel imaging technique, Helium Ion Microscopy (HIM), offers benefits over SEM, including higher resolution and the possibility of imaging non-conductive samples uncoated. HIM has not been widely utilized so far, and in this study the capability of HIM for imaging of TCNFs was evaluated. Freeze drying and critical point drying (CPD) techniques were applied to preserve the open fibril structure of the gel-like TCNFs. Both drying methods worked well, but CPD performed better resulting in the specific surface area of 386 m2 g−1 when compared to 172 m2 g−1 and 42 m2 g−1 of freeze dried samples frozen in propane and nitrogen, respectively. HIM imaging of TCNFs was successful but high magnification imaging was challenging because the ion beam tended to degrade the TCNFs. The effect of the imaging parameters on the degradation was studied and an ion dose as low as 0.9 ion per nm2 was required to prevent the damage. This study points out the differences between the gentle drying methods of TCNFs and demonstrates beam damage during imaging like none previously reported with HIM. The results can be utilized in future studies of cellulose or other biological materials as there is a growing interest for both the HIM technique and bio-based materials.
...
Julkaisija
Royal Society of ChemistryISSN Hae Julkaisufoorumista
2046-2069Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/30724263
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Nanoporous kaolin – cellulose nanofibril composites for printed electronics
Torvinen, Katariina; Pettersson, Fredrik; Lahtinen, Panu; Arstila, Kai; Kumar, Vinay; Osterbacka, Ronald; Toivakka, Martti; Saarinen, Jarkko J (IOP Publishing, 2017)Cellulose nano- and microfibrils (CNF/CMF) grades vary significantly based on the raw materials and process treatments used. In this study four different CNF/CMF grades were combined with kaolin clay pigment particles to ... -
Bio-imaging with the helium-ion microscope : a review
Schmidt, Matthias; Byrne, James M.; Maasilta, Ilari J. (Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2021)Scanning helium-ion microscopy (HIM) is an imaging technique with sub-nanometre resolution and is a powerful tool to resolve some of the tiniest structures in biology. In many aspects, the HIM resembles a field-emission ... -
Aqueous foam as the carrier phase in the deposition of fibre networks
Al-Qararah, Ahmad M. (University of Jyväskylä, 2015) -
Cellulose-inorganic hybrids of strongly reduced thermal conductivity
Spiliopoulos, Panagiotis; Gestranius, Marie; Zhang, Chao; Ghiyasi, Ramin; Tomko, John; Arstila, Kai; Putkonen, Matti; Hopkins, Patrick E.; Karppinen, Maarit; Tammelin, Tekla; Kontturi, Eero (Springer Science and Business Media LLC, 2022)The employment of atomic layer deposition and spin coating techniques for preparing inorganic–organic hybrid multilayer structures of alternating ZnO-CNC layers was explored in this study. Helium ion microscopy and X-ray ... -
Three-Dimensional Microstructural Properties of Nanofibrillated Cellulose Films
Miettinen, Arttu; Chinga-Carrasco, Gary; Kataja, Markku (M D P I AG, 2014)Abstract: Nanofibrillated cellulose (NFC) films have potential as oxygen barriers for, e.g., food packaging applications, but their use is limited by their hygroscopic characteristics. The three-dimensional microstructure ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.