Simple memetic computing structures for global optimization
Julkaisija
University of JyväskyläISBN
978-951-39-5803-9ISSN Hae Julkaisufoorumista
1456-5390Julkaisuun sisältyy osajulkaisuja
- Article I: I. Poikolainen, G. Iacca, F. Neri, E. Mininno, M. Weber. Shrinking Three Stage Optimal Memetic Exploration. Proceedings of the fifth international conference on bioinspired optimization methods and their applications, pages 61-74, 2012.
- Article II: I. Poikolainen, F. Caraffini, F. Neri, M. Weber. Handling Non-Separability in Three Stage Memetic Exploration. Proceedings of the fifth international conference on bioinspired optimization methods and their applications, pages 195-205, 2012.
- Article III: F. Neri, M. Weber, F. Caraffini, I. Poikolainen. Meta-Lamarckian Learning in Three Stage Optimal Memetic Exploration. 12th UK Workshop on Computational Intelligence (UKCI), pages 1-8, 2012. DOI: 10.1109/UKCI.2012.6335770
- Article IV: I. Poikolainen, G. Iacca,F. Caraffini, F. Neri. Focusing the search: a progressively shrinking memetic computing framework. Int. J. Innovative Computing and Applications, pages 3-16, 2013. DOI: 10.1504/IJICA.2013.055929
- Article V: F. Caraffini, F. Neri, I. Poikolainen. Micro-Differential Evolution with Extra Moves Along the Axes. IEEE Symposium on Differential Evolution (SDE), pages 46-53, 2013. DOI: 10.1109/SDE.2013.6601441
- Article VI: I. Poikolainen, F. Neri. Differential Evolution with Concurrent Fitness Based Local Search. IEEE Congress on Evolutionary Computation (CEC), pages 384-391, 2013. DOI: 10.1109/CEC.2013.6557595
- Article VII: I. Poikolainen, F. Neri, F.Caraffini. Cluster-Based Population Initialization for Differential Evolution Frameworks. Information Sciences, 297 (March), pages 216-235, 2015. DOI: 10.1016/j.ins.2014.11.026
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Väitöskirjat [3574]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Algorithmic issues in computational intelligence optimization : from design to implementation, from implementation to design
Caraffini, Fabio (University of Jyväskylä, 2016)The vertiginous technological growth of the last decades has generated a variety of powerful and complex systems. By embedding within modern hardware devices sophisticated software, they allow the solution of complicated ... -
Parallel global optimization : structuring populations in differential evolution
Weber, Matthieu (University of Jyväskylä, 2010) -
Handling expensive multiobjective optimization problems with evolutionary algorithms
Chugh, Tinkle (University of Jyväskylä, 2017)Multiobjective optimization problems (MOPs) with a large number of conflicting objectives are often encountered in industry. Moreover, these problem typically involve expensive evaluations (e.g. time consuming simulations ... -
Evolutionary Algorithms and Metaheuristics : Applications in Engineering Design and Optimization
Greiner, David; Periaux, Jacques; Quagliarella, Domenico; Magalhaes-Mendes, Jorge; Galván, Blas (Hindawi Publishing Corporation, 2018) -
Taming big knowledge evolution
Cochez, Michael (University of Jyväskylä, 2016)Information and its derived knowledge are not static. Instead, information is changing over time and our understanding of it evolves with our ability and willingness to consume the information. When compared to humans, ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.