University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Väitöskirjat
  • View Item
JYX > Opinnäytteet > Väitöskirjat > View Item

Taming big knowledge evolution

Thumbnail
View/Open
2.2 Mb

Downloads:  
Show download detailsHide download details  
Published in
Jyväskylä studies in computing
Authors
Cochez, Michael
Date
2016
Discipline
Tietotekniikka

 
Information and its derived knowledge are not static. Instead, information is changing over time and our understanding of it evolves with our ability and willingness to consume the information. When compared to humans, current computer systems seem very limited in their ability to really understand the meaning of things. On the other hand, they are very powerful when it comes down to performing exact computations. One aspect which sets humans apart from machines when trying to understand the world is that we will often make mistakes, forget information, or choose what to focus on. To put this in another perspective, it seems like humans can behave somehow more randomly and still outperform machines in knowledge related tasks. In computer science there is a branch of research concerned with allowing randomness or inaccuracy in algorithms, which are then called approximate algorithms. The main benefit of using these algorithms is that they are often much faster than their exact counterparts, at the cost of producing wrong or inexact results, once in a while. So, these algorithms could be used in contexts where erring once in while does not harm. If the chance of making a mistake is very slim, say lower than the chance of a memory error, then the expected precision will rival their exact counterparts. Furthermore, the input data to the algorithms often already contains a fair amount of uncertainty, such that the small error which the approximate algorithm introduces becomes more or less insignificant. In this dissertation, the author investigates the use of familiar and new approximate algorithms to knowledge discovery and evolution. The main contributions of the dissertation are a) an abstract formulation of what it means for an ontology to be and stay optimal over time, b) a contribution to a vision paper regarding the future of evolving knowledge ecosystems, c) an investigation of the application of locality-sensitive hashing (LSH) in the context of ontology matching and semantic search, d) the twister tries algorithm which is a novel approximate hierarchical clustering approach with linear space and time constraints, and e) an extension on the twister tries algorithm which trades a longer, but adaptable running time for a likely improvement of the clustering result. ...
Publisher
University of Jyväskylä
ISBN
978-951-39-6649-2
ISSN Search the Publication Forum
1456-5390
Keywords
knowledge evolution hierarchial clustering information retrieval tiedonlouhinta big data tiedonhaku tiedonhakujärjestelmät ontologiat semanttinen web algoritmit optimointi matemaattinen optimointi geneettiset algoritmit klusterianalyysi
URI

http://urn.fi/URN:ISBN:978-951-39-6649-2

Metadata
Show full item record
Collections
  • Väitöskirjat [3162]

Related items

Showing items with similar title or keywords.

  • On data mining applications in mobile networking and network security 

    Zolotukhin, Mikhail (University of Jyväskylä, 2014)
  • Kombinatorinen optimointi vuorovaikutussuunnittelussa 

    Rantonen, Laura (2018)
    Käyttöliittymien sekä ihmisen ja tietokoneen välisen vuorovaikutuksen suunnittelu on muuttunut järjestelmien monimutkaistuessa yhä hankalammaksi tehtäväksi. Ongelmaan on ehdotettu ratkaisuksi kombinatoristen optimointikeinojen ...
  • Algorithmic issues in computational intelligence optimization : from design to implementation, from implementation to design 

    Caraffini, Fabio (University of Jyväskylä, 2016)
    The vertiginous technological growth of the last decades has generated a variety of powerful and complex systems. By embedding within modern hardware devices sophisticated software, they allow the solution of complicated ...
  • Improvements and applications of the elements of prototype-based clustering 

    Hämäläinen, Joonas (Jyväskylän yliopisto, 2018)
    Clustering or cluster analysis is an essential part of data mining, machine learning, and pattern recognition. The most popularly applied clustering methods are partitioning-based or prototype-based methods. Prototype-based ...
  • Intrusion detection applications using knowledge discovery and data mining 

    Juvonen, Antti (University of Jyväskylä, 2014)
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre