Rank scores tests of multivariate independence
Taskinen, S., Kankainen, A., & Oja, H. (2004). Rank scores tests of multivariate independence. In Theory and Applications of Recent Robust Methods (pp. 329-341). Birkhäuser. Stat. Ind. Technol.. https://doi.org/10.1007/978-3-0348-7958-3_29
Julkaistu sarjassa
Stat. Ind. Technol.Päivämäärä
2004Tekijänoikeudet
© 2004 Birkhäuser Verlag. This is an author's final draft version of an article whose final and definitive form has been published by Birkhäuser Verlag, Part of Springer Science+Business Media.
New rank scores test statistics are proposed for testing whether two random vectors are independent. The tests are asymptotically distribution-free for elliptically symmetric marginal distributions. Recently, Gieser and Randles (1997), Taskinen, Kankainen and Oja (2003) and Taskinen, Oja and Randles (2005) introduced and discussed different multivariate extensions of the quadrant test, Kendall's tau and Spearman's rho statistics. In this paper, standardized multivariate spatial signs and the (univariate) ranks of the Mahalanobis-type distances of the observations from the origin are combined to construct ranks cores tests of independence. The limiting distributions of the test statistics are derived under the null hypothesis as well as under contiguous sequences of alternatives. Three different choices of the score functions, namely the sign scores, the Wilcoxon scores and the van der Waerden scores, are discussed in greater detail. The small sample and limiting efficiencies of the test procedures ara compared and the robustness properties are illustrated by an example. It is remarkable that, in the multinormal case, the limiting Pitman efficience of the van der Waerden scores test equals to that of the classical parametric Wilks’s test.
...
Julkaisija
BirkhäuserEmojulkaisun ISBN
3-7643-7060-2Kuuluu julkaisuun
Theory and Applications of Recent Robust MethodsAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/13973570
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Affine-invariant rank tests for multivariate independence in independent component models
Oja, Hannu; Paindaveine, Davy; Taskinen, Sara (Institute of Mathematical Statistics, 2016)We consider the problem of testing for multivariate independence in independent component (IC) models. Under a symmetry assumption, we develop parametric and nonparametric (signed-rank) tests. Unlike in independent ... -
On Independent Component Analysis with Stochastic Volatility Models
Matilainen, Markus; Miettinen, Jari; Nordhausen, Klaus; Oja, Hannu; Taskinen, Sara (Österreichische Statistische Gesellschaft, 2017)Consider a multivariate time series where each component series is assumed to be a linear mixture of latent mutually independent stationary time series. Classical independent component analysis (ICA) tools, such as ... -
Multivariate Independent Component Analysis Identifies Patients in Newborn Screening Equally to Adjusted Reference Ranges
Kouři,l Štěpán; de Sousa, Julie; Fačevicová Kamila; Gardlo, Alžběta; Muehlmann, Christoph; Nordhausen, Klaus; Friedecký, David; Adam, Tomáš (MDPI, 2023)Newborn screening (NBS) of inborn errors of metabolism (IEMs) is based on the reference ranges established on a healthy newborn population using quantile statistics of molar concentrations of biomarkers and their ratios. ... -
Sign and rank covariance matrices with applications to multivariate analysis
Ollila, Esa (University of Jyväskylä, 2002) -
Blind Source Separation Based on Joint Diagonalization in R : The Packages JADE and BSSasymp
Miettinen, Jari; Nordhausen, Klaus; Taskinen, Sara (Foundation for Open Access Statistics, 2017)Blind source separation (BSS) is a well-known signal processing tool which is used to solve practical data analysis problems in various fields of science. In BSS, we assume that the observed data consists of linear ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.