On Independent Component Analysis with Stochastic Volatility Models
Matilainen, M., Miettinen, J., Nordhausen, K., Oja, H., & Taskinen, S. (2017). On Independent Component Analysis with Stochastic Volatility Models. Austrian Journal of Statistics, 46(3-4), 57-66. https://doi.org/10.17713/ajs.v46i3-4.671
Julkaistu sarjassa
Austrian Journal of StatisticsPäivämäärä
2017Tekijänoikeudet
© the Authors, 2017. This is an open access article distributed under the terms of a Creative Commons License.
Consider a multivariate time series where each component series is assumed to be a
linear mixture of latent mutually independent stationary time series. Classical independent
component analysis (ICA) tools, such as fastICA, are often used to extract latent
series, but they don’t utilize any information on temporal dependence. Also financial time
series often have periods of low and high volatility. In such settings second order source
separation methods, such as SOBI, fail. We review here some classical methods used for
time series with stochastic volatility, and suggest modifications of them by proposing a
family of vSOBI estimators. These estimators use different nonlinearity functions to capture
nonlinear autocorrelation of the time series and extract the independent components.
Simulation study shows that the proposed method outperforms the existing methods when
latent components follow GARCH and SV models. This paper is an invited extended version
of the paper presented at the CDAM 2016 conference.
...
Julkaisija
Österreichische Statistische GesellschaftISSN Hae Julkaisufoorumista
1026-597XJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/26968046
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Ellei muuten mainita, aineiston lisenssi on © the Authors, 2017. This is an open access article distributed under the terms of a Creative Commons License.
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Multivariate Independent Component Analysis Identifies Patients in Newborn Screening Equally to Adjusted Reference Ranges
Kouři,l Štěpán; de Sousa, Julie; Fačevicová Kamila; Gardlo, Alžběta; Muehlmann, Christoph; Nordhausen, Klaus; Friedecký, David; Adam, Tomáš (MDPI, 2023)Newborn screening (NBS) of inborn errors of metabolism (IEMs) is based on the reference ranges established on a healthy newborn population using quantile statistics of molar concentrations of biomarkers and their ratios. ... -
ICA and stochastic volatility models
Matilainen, M.; Miettinen, Jari; Nordhausen, K.; Taskinen, Sara (Belarusian State University Publishing House, 2016)We consider multivariate time series where each component series is an unknown linear combination of latent mutually independent stationary time series. Multivariate financial time series have often periods of low ... -
Extracting conditionally heteroskedastic components using independent component analysis
Miettinen, Jari; Matilainen, Markus; Nordhausen, Klaus; Taskinen, Sara (Wiley-Blackwell, 2020)In the independent component model, the multivariate data are assumed to be a mixture of mutually independent latent components. The independent component analysis (ICA) then aims at estimating these latent components. In ... -
Affine-invariant rank tests for multivariate independence in independent component models
Oja, Hannu; Paindaveine, Davy; Taskinen, Sara (Institute of Mathematical Statistics, 2016)We consider the problem of testing for multivariate independence in independent component (IC) models. Under a symmetry assumption, we develop parametric and nonparametric (signed-rank) tests. Unlike in independent ... -
Tensor clustering on outer-product of coefficient and component matrices of independent component analysis for reliable functional magnetic resonance imaging data decomposition
Hu, Guoqiang; Zhang, Qing; Waters, Abigail B.; Li, Huanjie; Zhang, Chi; Wu, Jianlin; Cong, Fengyu; Nickerson, Lisa D. (Elsevier BV, 2019)Background. Stability of spatial components is frequently used as a post-hoc selection criteria for choosing the dimensionality of an independent component analysis (ICA) of functional magnetic resonance imaging (fMRI) ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.