Sign and rank covariance matrices with applications to multivariate analysis
Julkaistu sarjassa
Report / University of Jyväskylä. Department of Mathematics and StatisticsTekijät
Päivämäärä
2002Oppiaine
TilastotiedeJulkaisija
University of JyväskyläISBN
951-39-1257-4ISSN Hae Julkaisufoorumista
1457-8905Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Väitöskirjat [3599]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Robust second-order stationary spatial blind source separation using generalized sign matrices
Sipilä, Mika; Muehlmann, Christoph; Nordhausen, Klaus; Taskinen, Sara (Elsevier, 2024)Consider a spatial blind source separation model in which the observed multivariate spatial data are assumed to be a linear mixture of latent stationary spatially uncorrelated random fields. The objective is to recover an ... -
A more efficient second order blind identification method for separation of uncorrelated stationary time series
Taskinen, Sara; Miettinen, Jari; Nordhausen, Klaus (Elsevier BV, 2016)The classical second order source separation methods use approximate joint diagonalization of autocovariance matrices with several lags to estimate the unmixing matrix. Based on recent asymptotic results, we propose a novel ... -
Robustifying principal component analysis with spatial sign vectors
Taskinen, Sara; Koch, Inge; Oja, Hannu (Elsevier, 2012)In this paper, we apply orthogonally equivariant spatial sign covariance matrices as well as their affine equivariant counterparts in principal component analysis. The influence functions and asymptotic covariance matrices ... -
Affine-invariant rank tests for multivariate independence in independent component models
Oja, Hannu; Paindaveine, Davy; Taskinen, Sara (Institute of Mathematical Statistics, 2016)We consider the problem of testing for multivariate independence in independent component (IC) models. Under a symmetry assumption, we develop parametric and nonparametric (signed-rank) tests. Unlike in independent ... -
Test of the Latent Dimension of a Spatial Blind Source Separation Model
Muehlmann, Christoph; Bachoc, Francois; Nordhausen, Klaus; Yi, Mengxi (Institute of Statistical Science, Academia Sinica, 2024)We assume a spatial blind source separation model in which the observed multivariate spatial data is a linear mixture of latent spatially uncorrelated random fields containing a number of pure white noise components. We ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.