Blind Source Separation Based on Joint Diagonalization in R : The Packages JADE and BSSasymp
Miettinen, J., Nordhausen, K., & Taskinen, S. (2017). Blind Source Separation Based on Joint Diagonalization in R : The Packages JADE and BSSasymp. Journal of Statistical Software, 76(2), 1-31. https://doi.org/10.18637/jss.v076.i02
Julkaistu sarjassa
Journal of Statistical SoftwarePäivämäärä
2017Tekijänoikeudet
© the Authors, 2017. This is an open access article under the terms of the Creative Commons Attribution 3.0 Unported License.
Blind source separation (BSS) is a well-known signal processing tool which is used to
solve practical data analysis problems in various fields of science. In BSS, we assume that
the observed data consists of linear mixtures of latent variables. The mixing system and
the distributions of the latent variables are unknown. The aim is to find an estimate of an
unmixing matrix which then transforms the observed data back to latent sources. In this
paper we present the R packages JADE and BSSasymp. The package JADE offers several
BSS methods which are based on joint diagonalization. Package BSSasymp contains
functions for computing the asymptotic covariance matrices as well as their data-based
estimates for most of the BSS estimators included in package JADE. Several simulated
and real datasets are used to illustrate the functions in these two packages.
Julkaisija
Foundation for Open Access StatisticsISSN Hae Julkaisufoorumista
1548-7660Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/26487836
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Ellei muuten mainita, aineiston lisenssi on © the Authors, 2017. This is an open access article under the terms of the Creative Commons Attribution 3.0 Unported License.
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Multivariate Independent Component Analysis Identifies Patients in Newborn Screening Equally to Adjusted Reference Ranges
Kouři,l Štěpán; de Sousa, Julie; Fačevicová Kamila; Gardlo, Alžběta; Muehlmann, Christoph; Nordhausen, Klaus; Friedecký, David; Adam, Tomáš (MDPI, 2023)Newborn screening (NBS) of inborn errors of metabolism (IEMs) is based on the reference ranges established on a healthy newborn population using quantile statistics of molar concentrations of biomarkers and their ratios. ... -
On the usage of joint diagonalization in multivariate statistics
Nordhausen, Klaus; Ruiz-Gazen, Anne (Elsevier, 2022)Scatter matrices generalize the covariance matrix and are useful in many multivariate data analysis methods, including well-known principal component analysis (PCA), which is based on the diagonalization of the covariance ... -
Nonlinear blind source separation exploiting spatial nonstationarity
Sipilä, Mika; Nordhausen, Klaus; Taskinen, Sara (Elsevier, 2024)In spatial blind source separation the observed multivariate random fields are assumed to be mixtures of latent spatially dependent random fields. The objective is to recover latent random fields by estimating the unmixing ... -
Enhancing Performance of Linked Independent Component Analysis : Investigating the Influence of Subjects and Modalities
Xu, Huashuai; Li, Huanjie; Kärkkäinen, Tommi; Cong, Fengyu (IEEE, 2023)In recent years, neuroimaging studies have increasingly been acquiring multiple modalities of data. The benefit of integrating multiple modalities through fusion lies in its ability to combine the unique strengths of each ... -
KernelICA : Kernel Independent Component Analysis
Koesner, Christoph L.; Nordhausen, Klaus (CRAN - The Comprehensive R Archive Network, 2021)The kernel independent component analysis (kernel ICA) method introduced by Bach and Jordan (2003) . The incomplete Cholesky decomposition used in kernel ICA is provided as separate function.
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.