Blind Source Separation Based on Joint Diagonalization in R : The Packages JADE and BSSasymp

Abstract
Blind source separation (BSS) is a well-known signal processing tool which is used to solve practical data analysis problems in various fields of science. In BSS, we assume that the observed data consists of linear mixtures of latent variables. The mixing system and the distributions of the latent variables are unknown. The aim is to find an estimate of an unmixing matrix which then transforms the observed data back to latent sources. In this paper we present the R packages JADE and BSSasymp. The package JADE offers several BSS methods which are based on joint diagonalization. Package BSSasymp contains functions for computing the asymptotic covariance matrices as well as their data-based estimates for most of the BSS estimators included in package JADE. Several simulated and real datasets are used to illustrate the functions in these two packages.
Main Authors
Format
Articles Research article
Published
2017
Series
Subjects
Publication in research information system
Publisher
Foundation for Open Access Statistics
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201701171174Use this for linking
Review status
Peer reviewed
ISSN
1548-7660
DOI
https://doi.org/10.18637/jss.v076.i02
Language
English
Published in
Journal of Statistical Software
Citation
  • Miettinen, J., Nordhausen, K., & Taskinen, S. (2017). Blind Source Separation Based on Joint Diagonalization in R : The Packages JADE and BSSasymp. Journal of Statistical Software, 76(2), 1-31. https://doi.org/10.18637/jss.v076.i02
License
Open Access
Copyright© the Authors, 2017. This is an open access article under the terms of the Creative Commons Attribution 3.0 Unported License.

Share