What Is the Protonation State of Proteins in Crystals? Insights from Constant pH Molecular Dynamics Simulations
Aho, N., Groenhof, G., & Buslaev, P. (2024). What Is the Protonation State of Proteins in Crystals? Insights from Constant pH Molecular Dynamics Simulations. Journal of Physical Chemistry B, Early online. https://doi.org/10.1021/acs.jpcb.4c05947
Julkaistu sarjassa
Journal of Physical Chemistry BPäivämäärä
2024Pääsyrajoitukset
Embargo päättyy: 2025-10-31Pyydä artikkeli tutkijalta
Tekijänoikeudet
© 2024 American Chemical Society
X-ray crystallography is an important technique to determine the positions of atoms in a protein crystal. However, because the native environment in which proteins function, is not a crystal, but a solution, it is not a priori clear if the crystal structure represents the functional form of the protein. Because the protein structure and function often depend critically on the pH, the question arises whether proton affinities are affected by crystallization. X-ray diffraction usually does not reveal protons, which makes it difficult to experimentally measure pKa shifts in crystals. Here, we investigate whether this challenge can be addressed by performing in silico titration with constant pH molecular dynamics (MD) simulations. We compare the computed pKa values of proteins between solution and crystal environment and analyze these differences in the context of molecular interactions. For the proteins considered in this work, pKa shifts were mostly found for residues at the crystal interfaces, where the environment is more apolar in the crystal than in water. Although convergence was an obstacle, our simulations suggest that in principle it is possible to apply constant pH MD to protein crystals routinely and assess the effect of crystallization on protein function more systematically than with standard MD simulations. We also highlight technical challenges that need to be addressed to make MD simulations of crystals more reliable.
...
Julkaisija
American Chemical SocietyISSN Hae Julkaisufoorumista
1520-6106Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/243776791
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Scalable Constant pH Molecular Dynamics in GROMACS
Aho, Noora; Buslaev, Pavel; Jansen, Anton; Bauer, Paul; Groenhof, Gerrit; Hess, Berk (American Chemical Society (ACS), 2022)Molecular dynamics (MD) computer simulations are used routinely to compute atomistic trajectories of complex systems. Systems are simulated in various ensembles, depending on the experimental conditions one aims to mimic. ... -
Best Practices in Constant pH MD Simulations : Accuracy and Sampling
Buslaev, Pavel; Aho, Noora; Jansen, Anton; Bauer, Paul; Hess, Berk; Groenhof, Gerrit (American Chemical Society (ACS), 2022)Various approaches have been proposed to include the effect of pH in molecular dynamics (MD) simulations. Among these, the λ-dynamics approach proposed by Brooks and co-workers [Kong, X.; Brooks III, C. L. J. Chem. Phys.1996, ... -
phbuilder : A Tool for Efficiently Setting up Constant pH Molecular Dynamics Simulations in GROMACS
Jansen, Anton; Aho, Noora; Groenhof, Gerrit; Buslaev, Pavel; Hess, Berk (American Chemical Society (ACS), 2024)Constant pH molecular dynamics (MD) is a powerful technique that allows the protonation state of residues to change dynamically, thereby enabling the study of pH dependence in a manner that has not been possible before. ... -
A Plastic Biosynthetic Pathway for the Production of Structurally Distinct Microbial Sunscreens
Arsın, Sıla; Delbaje, Endrews; Jokela, Jouni; Wahlsten, Matti; Farrar, Zoë M.; Permi, Perttu; Fewer, David (American Chemical Society (ACS), 2023)Mycosporine-like amino acids (MAAs) are small, colorless, and water-soluble secondary metabolites. They have high molar extinction coefficients and a unique UV radiation absorption mechanism that make them effective ... -
4-Methyl/Phenyl-1,2,5,6-tetraazafluoranthen-3(2H)-ones Synthesis : Mechanistic Pathway Study and Single-Crystal X-ray Analysis of the Intermediates
Sarhan, Ahmed A. M.; Haukka, Matti; Barakat, Assem; Soliman, Saied M.; Boraei, Ahmed T. A.; Sopaih, Manar; Salama, Eid E. (MDPI, 2023)The synthesis of 4-methyl/phenyl-1,2,5,6-tetraazafluoranthen-3(2H)-one 4 and 7 has been reported with ninhydrin via a reaction first with ethyl acetoacetate or ethyl benzoylacetate and then a reaction of the resultant ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.