A Review of Generalized Linear Latent Variable Models and Related Computational Approaches
Korhonen, P., Nordhausen, K., & Taskinen, S. (2024). A Review of Generalized Linear Latent Variable Models and Related Computational Approaches. WIREs Computational Statistics, 16(6), Article e70005. https://doi.org/10.1002/wics.70005
Published in
WIREs Computational StatisticsDate
2024Copyright
© 2024 The Author(s). WIREs Computational Statistics published by Wiley Periodicals LLC.
Generalized linear latent variable models (GLLVMs) have become mainstream models in this analysis of correlated, m-dimensional data. GLLVMs can be seen as a reduced-rank version of generalized linear mixed models (GLMMs) as the latent variables which are of dimension p ≪ m induce a reduced-rank covariance structure for the model. Models are flexible and can be used for various purposes, including exploratory analysis, that is, ordination analysis, estimating patterns of residual correlation, multivariate inference about measured predictors, and prediction. Recent advances in computational tools allow the development of efficient, scalable algorithms for fitting GLLMVs for any response distribution. In this article, we discuss the basics of GLLVMs and review some options for model fitting. We focus on methods that are based on likelihood inference. The implementations available in R are compared via simulation studies and an example illustrates how GLLVMs can be applied as an exploratory tool in the analysis of data from community ecology.
...
Publisher
WileyISSN Search the Publication Forum
1939-5108Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/243922211
Metadata
Show full item recordCollections
Additional information about funding
The work of P.K. and S.T. was supported by the Research Council of Finland (453691) and the Kone Foundation. The work of K.N. was supported by the Research Council of Finland (363261). The work of K.N. and S.T. was supported by the HiTEc COST Action (CA21163).License
Related items
Showing items with similar title or keywords.
-
Variational Approximations for Generalized Linear Latent Variable Models
Hui, Francis K. C.; Warton, David I.; Ormerod, John T.; Haapaniemi, Viivi; Taskinen, Sara (American Statistical Association, 2017)Generalized linear latent variable models (GLLVMs) are a powerful class of models for understanding the relationships among multiple, correlated responses. Estimation, however, presents a major challenge, as the marginal ... -
Fitting Generalized Linear Latent Variable Models using the method of Extended Variational Approximation
Korhonen, Pekka (2020)Yhteisöekologian alalla tutkijat ovat usein kiinnostuneita yhden tai useamman kasvi- tai eläinlajin välisistä esiintyvyyssuhteista eri mittauspaikoilla tai ekosysteemeissä. Tämänkaltaiset tutkimuskysymykset johtavat ... -
Fast and universal estimation of latent variable models using extended variational approximations
Korhonen, Pekka; Hui, Francis K. C.; Niku, Jenni; Taskinen, Sara (Springer, 2023)Generalized linear latent variable models (GLLVMs) are a class of methods for analyzing multi-response data which has gained considerable popularity in recent years, e.g., in the analysis of multivariate abundance data in ... -
Efficient estimation of generalized linear latent variable models
Niku, Jenni; Brooks, Wesley; Herliansyah, Riki; Hui, Francis K. C.; Taskinen, Sara; Warton, David I. (Public Library of Science, 2019)Generalized linear latent variable models (GLLVM) are popular tools for modeling multivariate, correlated responses. Such data are often encountered, for instance, in ecological studies, where presence-absences, counts, ... -
gllvm : Fast analysis of multivariate abundance data with generalized linear latent variable models in R
Niku, Jenni; Hui, Francis K.C.; Taskinen, Sara; Warton, David I. (Wiley, 2019)1.There has been rapid development in tools for multivariate analysis based on fully specified statistical models or “joint models”. One approach attracting a lot of attention is generalized linear latent variable models ...