Näytä suppeat kuvailutiedot

dc.contributor.authorKorhonen, Pekka
dc.contributor.authorNordhausen, Klaus
dc.contributor.authorTaskinen, Sara
dc.date.accessioned2024-11-15T09:53:28Z
dc.date.available2024-11-15T09:53:28Z
dc.date.issued2024
dc.identifier.citationKorhonen, P., Nordhausen, K., & Taskinen, S. (2024). A Review of Generalized Linear Latent Variable Models and Related Computational Approaches. <i>WIREs Computational Statistics</i>, <i>16</i>(6), Article e70005. <a href="https://doi.org/10.1002/wics.70005" target="_blank">https://doi.org/10.1002/wics.70005</a>
dc.identifier.otherCONVID_243922211
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/98464
dc.description.abstractGeneralized linear latent variable models (GLLVMs) have become mainstream models in this analysis of correlated, m-dimensional data. GLLVMs can be seen as a reduced-rank version of generalized linear mixed models (GLMMs) as the latent variables which are of dimension p ≪ m induce a reduced-rank covariance structure for the model. Models are flexible and can be used for various purposes, including exploratory analysis, that is, ordination analysis, estimating patterns of residual correlation, multivariate inference about measured predictors, and prediction. Recent advances in computational tools allow the development of efficient, scalable algorithms for fitting GLLMVs for any response distribution. In this article, we discuss the basics of GLLVMs and review some options for model fitting. We focus on methods that are based on likelihood inference. The implementations available in R are compared via simulation studies and an example illustrates how GLLVMs can be applied as an exploratory tool in the analysis of data from community ecology.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofseriesWIREs Computational Statistics
dc.rightsCC BY 4.0
dc.subject.otherfactor analysis
dc.subject.otherGauss–Hermite
dc.subject.otherLaplace approximation
dc.subject.otherlikelihood function
dc.subject.otherMCMC
dc.subject.otherquasi-likelihood
dc.titleA Review of Generalized Linear Latent Variable Models and Related Computational Approaches
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202411157305
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bc
dc.description.reviewstatuspeerReviewed
dc.relation.issn1939-5108
dc.relation.numberinseries6
dc.relation.volume16
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 The Author(s). WIREs Computational Statistics published by Wiley Periodicals LLC.
dc.rights.accesslevelopenAccessfi
dc.subject.ysotodennäköisyyslaskenta
dc.subject.ysofaktorianalyysi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p4746
jyx.subject.urihttp://www.yso.fi/onto/yso/p6540
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1002/wics.70005
jyx.fundinginformationThe work of P.K. and S.T. was supported by the Research Council of Finland (453691) and the Kone Foundation. The work of K.N. was supported by the Research Council of Finland (363261). The work of K.N. and S.T. was supported by the HiTEc COST Action (CA21163).
dc.type.okmA2


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0