Show simple item record

dc.contributor.authorZhang, Shanshan
dc.contributor.authorWu, Chuyang
dc.contributor.authorJokinen, Jussi P. P.
dc.contributor.editorKasurinen, Jussi
dc.contributor.editorPäivärinta, Tero
dc.contributor.editorVartiainen, Tero
dc.date.accessioned2024-11-13T07:00:26Z
dc.date.available2024-11-13T07:00:26Z
dc.date.issued2024
dc.identifier.citationZhang, S., Wu, C., & Jokinen, J. P.P. (2024). Quantifying Uncertainty in Machine Theory of Mind Across Time. In J. Kasurinen, T. Päivärinta, & T. Vartiainen (Eds.), <i>TKTP 2024 : Proceedings of the 41st Annual Doctoral Symposium of Computer Science</i> (3776, pp. 151-156). RWTH Aachen. CEUR Workshop Proceedings. <a href="https://ceur-ws.org/Vol-3776/shortpaper14.pdf" target="_blank">https://ceur-ws.org/Vol-3776/shortpaper14.pdf</a>
dc.identifier.otherCONVID_243831049
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/98364
dc.description.abstractAs intelligent interactive technologies advance, ensuring alignment with user preferences is critical. Machine theory of mind enablessystems to infer latent mental states from observed behaviors, similarly to humans. Currently, there is no formal mechanism for integrating multiple observations over time and quantifying the uncertainty of inferences as the function of accumulated evidence in a provably human-like way. This paper addresses the issue through Bayesian inference, proposing a model that maintains a posterior belief about mental states as a probability distribution, updated with observational data. The advantage of Bayesian statistics lies in the possibility of evaluating the certainty of these inferences. We validate the model’s human-like mental inference capabilities through an experiment.en
dc.format.extent156
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherRWTH Aachen
dc.relation.ispartofTKTP 2024 : Proceedings of the 41st Annual Doctoral Symposium of Computer Science
dc.relation.ispartofseriesCEUR Workshop Proceedings
dc.relation.urihttps://ceur-ws.org/Vol-3776/shortpaper14.pdf
dc.rightsCC BY 4.0
dc.subject.otherhuman-computer interaction
dc.subject.othermachine theory of mind
dc.subject.othermentalizing
dc.subject.otheruncertainty quantification
dc.titleQuantifying Uncertainty in Machine Theory of Mind Across Time
dc.typeconferenceObject
dc.identifier.urnURN:NBN:fi:jyu-202411137208
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange151-156
dc.relation.issn1613-0073
dc.relation.volume3776
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 Copyright for this paper by its author
dc.rights.accesslevelopenAccessfi
dc.relation.conferenceAnnual Doctoral Symposium of Computer Science
dc.subject.ysokäyttöliittymät
dc.subject.ysomallintaminen
dc.subject.ysoihmisen ja tietokoneen vuorovaikutus
dc.subject.ysokoneoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p1295
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
jyx.subject.urihttp://www.yso.fi/onto/yso/p38007
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
jyx.fundinginformationThis research has been supported by the Academy of Finland (grant 330347).
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0