Detecting Changes in Mental Models during Interaction
Chuyang, W., Shanshan, Z., & Jokinen, J. P.P. (2024). Detecting Changes in Mental Models during Interaction. In J. Kaurinen, T. Päivärinta, & T. Vartiainen (Eds.), TKTP 2024 : Proceedings of the 41st Annual Doctoral Symposium of Computer Science (3776, pp. 54-60). RWTH Aachen. CEUR Workshop Proceedings. https://ceur-ws.org/Vol-3776/shortpaper06.pdf
Julkaistu sarjassa
CEUR Workshop ProceedingsPäivämäärä
2024Tekijänoikeudet
© 2024 Copyright for this paper by its authors.
This paper introduces a novel computational cognitive model that maps latent mental models to observable behaviors, allowing the system to detect changes in users’ mental models from their actions. We propose an inference framework to dynamically adjust to the user’s evolving understanding and decision-making processes. An empirical experiment demonstrates the framework’s ability to accurately detect shifts in users’ mental models based on their interactions. The results indicate a consistent improvement in prediction accuracy and a decrease in variance over time, suggesting the model’s potential for real-time application in designing adaptive interactive systems.
Julkaisija
RWTH AachenKonferenssi
Annual Doctoral Symposium of Computer ScienceKuuluu julkaisuun
TKTP 2024 : Proceedings of the 41st Annual Doctoral Symposium of Computer ScienceISSN Hae Julkaisufoorumista
1613-0073Asiasanat
Alkuperäislähde
https://ceur-ws.org/Vol-3776/shortpaper06.pdfJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/243831644
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This research has been supported by the Academy of Finland (grant 330347).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Quantifying Uncertainty in Machine Theory of Mind Across Time
Zhang, Shanshan; Wu, Chuyang; Jokinen, Jussi P. P. (RWTH Aachen, 2024)As intelligent interactive technologies advance, ensuring alignment with user preferences is critical. Machine theory of mind enablessystems to infer latent mental states from observed behaviors, similarly to humans. ... -
Hearing gestures : vocalisations as embodied projections of intentionality in designing non-speech sounds for communicative functions
Tuuri, Kai (University of Jyväskylä, 2011) -
Pedagogical Agents Communicating and Scaffolding Students’ Learning : High School Teachers’ and Students’ Perspectives
Sikström, Pieta; Valentini, Chiara; Sivunen, Anu; Kärkkäinen, Tommi (Elsevier, 2024)Pedagogical agents (PAs) communicate verbally and non-verbally with students in digital and virtual reality/augmented reality learning environments. PAs have been shown to be beneficial for learning, and generative artificial ... -
GUI personalization framework driven by personal semantic user profile
Suopellonmäki, Pekka (2017)Sovelluskehys käyttöliittymän personointiin käyttäen semanttista käyttäjäprofiilia. Internetin kehittyessä maailma verkostoituu yhä enemmän. Käytämme päivittäin monia laitteita ja erilaisia käyttöliittymiä, mutta vaikka ... -
Reflections on the human role in AI policy formulations : how do national AI strategies view people?
Salo-Pöntinen, Henrikki; Saariluoma, Pertti (Springer Science and Business Media LLC, 2022)Purpose There is no artificial intelligence (AI) without people. People design and develop AI; they modify and use it and they have to reorganize the ways they have carried out tasks in their work and everyday life. ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.