Applications of the Stone–Weierstrass theorem in the Calderón problem
Liimatainen, T., & Salo, M. (2024). Applications of the Stone–Weierstrass theorem in the Calderón problem. Annales Fennici Mathematici, 49(2), 583-600. https://doi.org/10.54330/afm.148911
Julkaistu sarjassa
Annales Fennici MathematiciPäivämäärä
2024Tekijänoikeudet
© 2024 Annales Fennici Mathematici
We give examples on the use of the Stone–Weierstrass theorem in inverse problems. We show uniqueness in the linearized Calderón problem on holomorphically separable Kähler manifolds and in the Calderón problem for nonlinear equations on conformally transversally anisotropic manifolds. We also study the holomorphic separability condition in terms of plurisubharmonic functions. The Stone–Weierstrass theorem allows us to generalize and simplify earlier results. It also makes it possible to circumvent the use of complex geometrical optics solutions and inversion of explicit transforms in certain cases. Annamme esimerkkejä Stonen–Weierstrassin lauseen käytöstä käänteisongelmissa. Osoitamme yksikäsitteisyyden linearisoidussa Calderónin ongelmassa holomorfisesti separoituvilla Kählerin monistoilla ja Calderónin ongelmassa epälineaarisille yhtälöille konformisesti transversaalisesti anisotrooppisilla monistoilla. Tutkimme myös holomorfista erotteluehtoa plurisubharmonisten funktioiden avulla. Stonen–Weierstrassin lausetta käyttämällä voimme yleistää ja yksinkertaistaa aiempia tuloksia. Menetelmän avulla voidaan tietyissä tapauksissa välttää kompleksistengeometrisen optiikan ratkaisujen tai eksplisiittisten muunnosten kääntämisen aiheuttamat rajoitteet.
Julkaisija
Suomen matemaattinen yhdistysISSN Hae Julkaisufoorumista
2737-0690Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/243645434
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The Calderón problem in transversally anisotropic geometries
Ferreira, David Dos Santos; Kurylev, Yaroslav; Lassas, Matti; Salo, Mikko (European Mathematical Society Publishing House; European Mathematical Society, 2016)We consider the anisotropic Calder´on problem of recovering a conductivity matrix or a Riemannian metric from electrical boundary measurements in three and higher dimensions. In the earlier work [13], it was shown that ... -
The Linearized Calderón Problem in Transversally Anisotropic Geometries
Ferreira, David Dos Santos; Kurylev, Yaroslav; Lassas, Matti; Liimatainen, Tony; Salo, Mikko (Oxford University Press, 2020)In this article we study the linearized anisotropic Calderón problem. In a compact manifold with boundary, this problem amounts to showing that products of harmonic functions form a complete set. Assuming that the manifold ... -
The Calderón problem with partial data on manifolds and applications
Kenig, Carlos; Salo, Mikko (Mathematical Sciences Publishers, 2013)We consider Calderón’s inverse problem with partial data in dimensions n ≥ 3. If the inaccessible part of the boundary satisfies a (conformal) flatness condition in one direction, we show that this problem reduces to the ... -
Limiting Carleman weights and conformally transversally anisotropic manifolds
Angulo, Pablo; Faraco, Daniel; Guijarro, Luis; Salo, Mikko (American Mathematical Society, 2020)We analyze the structure of the set of limiting Carleman weights in all conformally flat manifolds, $ 3$-manifolds, and $ 4$-manifolds. In particular we give a new proof of the classification of Euclidean limiting Carleman ... -
The anisotropic Calderón problem at large fixed frequency on manifolds with invertible ray transform
Ma, Shiqi; Sahoo, Suman Kumar; Salo, Mikko (Wiley, 2024)We consider the inverse problem of recovering a potential from the Dirichlet to Neumann map at a large fixed frequency on certain Riemannian manifolds. We extend the earlier result of Uhlmann and Wang [arXiv:2104.03477] ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.