dc.contributor.author | Jin, Shan | |
dc.contributor.author | Xu, Hongming | |
dc.contributor.author | Dong, Yue | |
dc.contributor.author | Wang, Xiaofeng | |
dc.contributor.author | Hao, Xinyu | |
dc.contributor.author | Qin, Fengying | |
dc.contributor.author | Wang, Ranran | |
dc.contributor.author | Cong, Fengyu | |
dc.date.accessioned | 2024-10-23T11:43:48Z | |
dc.date.available | 2024-10-23T11:43:48Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Jin, S., Xu, H., Dong, Y., Wang, X., Hao, X., Qin, F., Wang, R., & Cong, F. (2024). Ranking attention multiple instance learning for lymph node metastasis prediction on multicenter cervical cancer MRI. <i>Journal of Applied Clinical Medical Physics</i>, <i>Early online</i>, Article e14547. <a href="https://doi.org/10.1002/acm2.14547" target="_blank">https://doi.org/10.1002/acm2.14547</a> | |
dc.identifier.other | CONVID_243348002 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/97652 | |
dc.description.abstract | Purpose
In the current clinical diagnostic process, the gold standard for lymph node metastasis (LNM) diagnosis is histopathological examination following surgical lymphadenectomy. Developing a non-invasive and preoperative method for predicting LNM is necessary and holds significant clinical importance.
Methods
We develop a ranking attention multiple instance learning (RA-MIL) model that integrates convolutional neural networks (CNNs) and ranking attention pooling to diagnose LNM from T2 MRI. Our RA-MIL model applies the CNNs to derive imaging features from 2D MRI slices and employs ranking attention pooling to create patient-level feature representation for diagnostic classification. Based on the MIL and attention theory, informative regions of top-ranking MRI slices from LNM-positive patients are visualized to enhance the interpretability of automatic LNM prediction. This retrospective study collected 300 female patients with cervical cancer who underwent T2-weighted magnetic resonance imaging (MRI) scanning and histopathological diagnosis from one hospital (289 patients) and one open-source dataset (11 patients).
Results
Our RA-MIL model delivers promising LNM prediction performance, achieving the area under the receiver operating characteristic curve (AUC) of 0.809 on the internal test set and 0.833 on the public dataset. Experiments show significant improvements in LNM status prediction using the proposed RA-MIL model compared with other state-of-the-art (SOTA) comparative deep learning models.
Conclusions
The developed RA-MIL model has the potential to serve as a non-invasive auxiliary tool for preoperative LNM prediction, offering visual interpretability regarding informative MRI slices and regions in LNM-positive patients. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Wiley | |
dc.relation.ispartofseries | Journal of Applied Clinical Medical Physics | |
dc.rights | CC BY 4.0 | |
dc.subject.other | cervical cancer | |
dc.subject.other | deep learning | |
dc.subject.other | lymph node metastasis | |
dc.subject.other | magnetic resonance imaging | |
dc.subject.other | multiple instance learning | |
dc.title | Ranking attention multiple instance learning for lymph node metastasis prediction on multicenter cervical cancer MRI | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202410236509 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 1526-9914 | |
dc.relation.volume | Early online | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 The Author(s).Journal of Applied Clinical Medical Physics published by Wiley Periodicals,LLC on behalf of The American Association of Physicists in Medicine | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | magneettikuvaus | |
dc.subject.yso | imusolmukkeet | |
dc.subject.yso | kohdunkaulan syöpä | |
dc.subject.yso | etäpesäkkeet | |
dc.subject.yso | kuva-analyysi | |
dc.subject.yso | diagnostiikka | |
dc.subject.yso | neuraalilaskenta | |
dc.subject.yso | syväoppiminen | |
dc.subject.yso | koneoppiminen | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12131 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2676 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17173 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2298 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16870 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p416 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7291 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p39324 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1002/acm2.14547 | |
jyx.fundinginformation | This study has received funding from the National Natural Science Foundation of China (Grant No. 82102135), the Fundamental Research Funds for the Central Universities (Grant No. DUT23YG130), and the Natural Science Foundation of Liaoning Province (Grant No. 2022-YGJC-36). | |
dc.type.okm | A1 | |